Suppr超能文献

神经影像学特征及深度学习模型用于大学生亚临床抑郁合并睡眠障碍的早期诊断及预测非药物治疗效果

Neuroimaging signatures and a deep learning modeling for early diagnosing and predicting non-pharmacological therapy success for subclinical depression comorbid sleep disorders in college students.

作者信息

Liang Xinyu, Guo Yunan, Zhang Hanyue, Wang Xiaotong, Li Danian, Liu Yujie, Zhang Jianjia, Zhou Luping, Qiu Shijun

机构信息

First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.

Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.

出版信息

Int J Clin Health Psychol. 2024 Oct-Dec;24(4):100526. doi: 10.1016/j.ijchp.2024.100526. Epub 2024 Dec 12.

Abstract

OBJECTIVE

College students with subclinical depression often experience sleep disturbances and are at high risk of developing major depressive disorder without early intervention. Clinical guidelines recommend non-pharmacotherapy as the primary option for subclinical depression with comorbid sleep disorders (sDSDs). However, the neuroimaging mechanisms and therapeutic responses associated with these treatments are poorly understood. Additionally, the lack of an early diagnosis and therapeutic effectiveness prediction model hampers the clinical promotion and acceptance of non-pharmacological interventions for subclinical depression.

METHODS

This study involved pre- and post-treatment resting-state functional Magnetic Resonance Imaging (rs-fMRI) and clinical data from a multicenter, single-blind, randomized clinical trial. The trial included 114 first-episode, drug-naïve university students with subclinical depression and comorbid sleep disorders (sDSDs; Mean age=22.8±2.3 years; 73.7% female) and 93 healthy controls (HCs; Mean age=22.2±1.7 years; 63.4% female). We examined altered functional connectivity (FC) and brain network connective mode related to subregions of Default Mode Network (sub-DMN) using seed-to-voxel analysis before and after six weeks of non-pharmacological antidepressant treatment. Additionally, we developed an individualized diagnosing and therapeutic effect predicting model to realize early recognition of subclinical depression and provide objective suggestions to select non-pharmacological therapy by using the newly proposed Hierarchical Functional Brain Network (HFBN) with advanced deep learning algorithms within the transformer framework.

RESULTS

Neuroimaging responses to non-pharmacologic treatments are characterized by alterations in functional connectivity (FC) and shifts in brain network connectivity patterns, particularly within the sub-DMN. At baseline, significantly increased FC was observed between the sub-DMN and both Executive Control Network (ECN) and Dorsal Attention Network (DAN). Following six weeks of non-pharmacologic intervention, connectivity patterns primarily shifted within the sub-DMN and ECN, with a predominant decrease in FCs. The HFBN model demonstrated superior performance over traditional deep learning models, accurately predicting therapeutic outcomes and diagnosing subclinical depression, achieving cumulative scores of 80.47% for sleep quality prediction and 84.67% for depression prediction, along with an overall diagnostic accuracy of 82.34%.

CONCLUSIONS

Two-scale neuroimaging signatures related to the sub-DMN underlying the antidepressant mechanisms of non-pharmacological treatments for subclinical depression. The HFBN model exhibited supreme capability in early diagnosing and predicting non-pharmacological treatment outcomes for subclinical depression, thereby promoting objective clinical psychological treatment decision-making.

摘要

目的

患有亚临床抑郁症的大学生常伴有睡眠障碍,若不及早干预,发展为重度抑郁症的风险很高。临床指南推荐非药物疗法作为伴有睡眠障碍的亚临床抑郁症(sDSDs)的主要治疗选择。然而,这些治疗相关的神经影像机制和治疗反应尚不清楚。此外,缺乏早期诊断和治疗效果预测模型阻碍了亚临床抑郁症非药物干预措施在临床上的推广和应用。

方法

本研究纳入了一项多中心、单盲、随机临床试验的治疗前和治疗后静息态功能磁共振成像(rs-fMRI)及临床数据。该试验包括114名首次发作、未服用过药物的患有亚临床抑郁症且伴有睡眠障碍的大学生(sDSDs;平均年龄=22.8±2.3岁;73.7%为女性)和93名健康对照者(HCs;平均年龄=22.2±1.7岁;63.4%为女性)。我们在非药物抗抑郁治疗六周前后,使用种子点体素分析检查了与默认模式网络子区域(sub-DMN)相关的功能连接(FC)改变和脑网络连接模式。此外,我们开发了一个个体化诊断和治疗效果预测模型,通过在Transformer框架内使用新提出的分层功能脑网络(HFBN)和先进的深度学习算法,实现对亚临床抑郁症的早期识别,并为选择非药物治疗提供客观建议。

结果

非药物治疗的神经影像反应表现为功能连接(FC)的改变和脑网络连接模式的变化,特别是在sub-DMN内。在基线时,观察到sub-DMN与执行控制网络(ECN)和背侧注意网络(DAN)之间的FC显著增加。经过六周的非药物干预后,连接模式主要在sub-DMN和ECN内发生变化,FC主要降低。HFBN模型表现出优于传统深度学习模型的性能,能够准确预测治疗结果并诊断亚临床抑郁症,睡眠质量预测的累积得分达到80.47%,抑郁症预测的累积得分达到84.67%,总体诊断准确率为82.34%。

结论

与sub-DMN相关的双尺度神经影像特征是亚临床抑郁症非药物治疗抗抑郁机制的基础。HFBN模型在早期诊断和预测亚临床抑郁症的非药物治疗结果方面表现出卓越能力,从而促进客观的临床心理治疗决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f14/11699106/f2082e797513/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验