Suppr超能文献

数据驱动的社区参与:利用定量和定性数据在不断扩大的集水区确定优先事项并启动新举措。

Data-Driven Community Engagement: Using Quantitative and Qualitative Data to Set Priorities and Launch New Initiatives in a Growing Catchment Area.

作者信息

McDougall Jean A, Briant Katherine J, Carosso Elizabeth, Cole Allison M, Dee Craig, Doody David R, Hannon Peggy A, Henderson Vida, Johnson Selisha, Parker Myra, Schwartz Stephen M, Mendoza Jason A

机构信息

Office of Community Outreach and Engagement, Fred Hutchinson Cancer Center, Seattle, Washington.

Department of Family Medicine, University of Washington School of Medicine, Seattle, Washington.

出版信息

Prev Oncol Epidemiol. 2024;2(1). doi: 10.1080/28322134.2024.2382286. Epub 2024 Jul 25.

Abstract

In 2022, the catchment area of the Fred Hutchinson/University of Washington/Seattle Children's Cancer Consortium (the Consortium) grew from 13-counties in Western Washington State to include all 39 counties in Washington. Widening the catchment area provided new opportunities for the Consortium to monitor the cancer burden, identify cancer-related health disparities, use a bidirectional approach to develop cancer focused programming, and facilitate research in clinical and community settings. In this commentary, we describe the exploratory process of catchment area change led by the Consortium's Office of Community Outreach and Engagement and new initiatives that followed that growth. We hope that by sharing the ongoing, data-driven community engagement approach in the Consortium's current, statewide catchment area, our experience will be of value to other cancer centers looking to engage with communities and develop bidirectional partnerships in new areas.

摘要

2022年,弗雷德·哈钦森癌症研究中心/华盛顿大学/西雅图儿童癌症联盟(以下简称“联盟”)的服务区域从华盛顿州西部的13个县扩大到了华盛顿州的全部39个县。服务区域的扩大为联盟提供了新的机会,以监测癌症负担、识别与癌症相关的健康差异、采用双向方法制定以癌症为重点的项目,并促进临床和社区环境中的研究。在这篇评论中,我们描述了由联盟社区外展与参与办公室主导的服务区域变化探索过程以及在这一增长之后开展的新举措。我们希望,通过分享联盟目前在全州范围内的服务区域中正在采用的数据驱动型社区参与方法,我们的经验将对其他希望与社区互动并在新领域建立双向伙伴关系的癌症中心有所帮助。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验