Suppr超能文献

锂/石榴石型固态电解质界面处的空位演化:堆积压力与工作温度驱动的蠕变效应

Void Evolution at the Li/LLZO Interface: Stack Pressure and Operating Temperature-Driven Creep Effect.

作者信息

Li Ke, Huang Jundi, Qu Xinyi, Fu Gaoming, Chen Xiang, Shen Weijia, Lin Yixin

机构信息

School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan, Hubei 430074, China.

出版信息

ACS Appl Mater Interfaces. 2025 Jan 15;17(2):3146-3162. doi: 10.1021/acsami.4c13564. Epub 2025 Jan 6.

Abstract

All-solid-state lithium metal batteries hold promise for meeting the industrial demands for high energy density and safety. However, voids are formed at the lithium metal anode/solid-state electrolyte interface during stripping, deteriorating interface contact and reducing the cycle stability. Stack pressure and operating temperature are effective methods to activate creep deformation in lithium metal, promoting interfacial deformation and alleviating void-induced interface issues. Nevertheless, we lack a clear understanding of how stack pressure and operating temperature affect void evolution via the creep effect, as well as a theoretical basis for how to regulate pressure and temperature to achieve void healing and interface stability. Therefore, we develop a coupled electrochemical-diffusion-mechanical (creep)-phase field for void evolution (EDMP-VE) model, describing lithium stripping and deposition, bulk and surface diffusion, creep deformation, lattice distortion, and vacancy nucleation and annihilation. The model successfully captures void evolution at the interface during a stripping-plating cycle. We use normalized geometric parameters to quantitatively characterize the dynamic void evolution and describe the creep effect by the temporal and spatial evolution of hydrostatic stress, von Mises stress, and equivalent creep strain. It reveals the influence mechanism of stack pressure and operating temperature-driven lithium metal creep on void evolution. High stack pressure and operating temperature activate considerable creep deformation, suppress void expansion, accelerate void filling, achieve void annihilation, and improve interface contact. Considering the coupling effect of stack pressure and operating temperature, we construct a phase diagram of stack pressure-operating temperature-void healing rate, identify the void healing region, transition region, and void deterioration region, and determine the parameter window for achieving void healing. This work provides a theoretical foundation for understanding the impact mechanism of the creep effect on void evolution and supplies technical support for regulating stack pressure and operating temperature to implement void healing.

摘要

全固态锂金属电池有望满足工业对高能量密度和安全性的需求。然而,在锂金属阳极/固态电解质界面处,脱锂过程中会形成空隙,这会恶化界面接触并降低循环稳定性。堆叠压力和工作温度是激活锂金属蠕变变形的有效方法,可促进界面变形并减轻空隙引起的界面问题。尽管如此,我们仍不清楚堆叠压力和工作温度如何通过蠕变效应影响空隙演化,也缺乏如何调节压力和温度以实现空隙愈合和界面稳定性的理论依据。因此,我们开发了一种用于空隙演化的电化学-扩散-力学(蠕变)-相场耦合模型(EDMP-VE),该模型描述了锂的脱锂和沉积、体扩散和表面扩散、蠕变变形、晶格畸变以及空位的成核和湮灭。该模型成功捕捉了脱锂-电镀循环过程中界面处的空隙演化。我们使用归一化几何参数定量表征动态空隙演化,并通过静水应力、冯·米塞斯应力和等效蠕变应变的时空演化来描述蠕变效应。它揭示了堆叠压力和工作温度驱动的锂金属蠕变对空隙演化的影响机制。高堆叠压力和工作温度会激活相当大的蠕变变形,抑制空隙扩展,加速空隙填充,实现空隙湮灭,并改善界面接触。考虑到堆叠压力和工作温度的耦合效应,我们构建了堆叠压力-工作温度-空隙愈合率相图,确定了空隙愈合区域、过渡区域和空隙恶化区域,并确定了实现空隙愈合的参数窗口。这项工作为理解蠕变效应空隙演化的影响机制提供了理论基础,并为调节堆叠压力和工作温度以实现空隙愈合提供了技术支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验