Suppr超能文献

利用声学指数和基于每日时间估计训练的深度嵌入技术展示马来西亚雨林声景中的时间模式a)。

Temporal patterns in Malaysian rainforest soundscapes demonstrated using acoustic indices and deep embeddings trained on time-of-day estimationa).

作者信息

Loo Yen Yi, Lee Mei Yi, Shaheed Samien, Maul Tomas, Clink Dena Jane

机构信息

Sunway Centre for Planetary Health, Sunway University, Petaling Jaya, Selangor 47500, Malaysia.

School of Biological Sciences, Universiti Sains Malaysia, Persiaran Sains, Gelugor, Penang 11800, Malaysia.

出版信息

J Acoust Soc Am. 2025 Jan 1;157(1):1-16. doi: 10.1121/10.0034638.

Abstract

Rapid urban development impacts the integrity of tropical ecosystems on broad spatiotemporal scales. However, sustained long-term monitoring poses significant challenges, particularly in tropical regions. In this context, ecoacoustics emerges as a promising approach to address this gap. Yet, harnessing insights from extensive acoustic datasets presents its own set of challenges, such as the time and expertise needed to label species information in recordings. Here, this study presents an approach to investigating soundscapes: the use of a deep neural network trained on time-of-day estimation. This research endeavors to (1) provide a qualitative analysis of the temporal variation (daily and monthly) of the soundscape using conventional ecoacoustic indices and deep ecoacoustic embeddings, (2) compare the predictive power of both methods for time-of-day estimation, and (3) compare the performance of both methods for supervised classification and unsupervised clustering to the specific recording site, habitat type, and season. The study's findings reveal that conventional acoustic indices and the proposed deep ecoacoustic embeddings approach exhibit overall comparable performance. This article concludes by discussing potential avenues for further refinement of the proposed method, which will further contribute to understanding of soundscape variation across time and space.

摘要

快速的城市发展在广泛的时空尺度上影响着热带生态系统的完整性。然而,持续的长期监测带来了重大挑战,尤其是在热带地区。在这种背景下,生态声学成为填补这一空白的一种很有前景的方法。然而,从大量声学数据集中获取见解也带来了一系列自身的挑战,比如在录音中标记物种信息所需的时间和专业知识。在此,本研究提出了一种调查声景的方法:使用一个基于时间估计训练的深度神经网络。本研究旨在(1)使用传统生态声学指标和深度生态声学嵌入对声景的时间变化(每日和每月)进行定性分析,(2)比较这两种方法在时间估计方面的预测能力,以及(3)比较这两种方法在针对特定录音地点、栖息地类型和季节的监督分类和无监督聚类方面的性能。研究结果表明,传统声学指标和所提出的深度生态声学嵌入方法总体表现相当。本文最后讨论了进一步完善所提方法的潜在途径,这将进一步有助于理解声景随时间和空间的变化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验