Rosa Nathália M P, Máximo-Canadas Matheus, do Nascimento Mossri João Luís, Rodrigues Rodrigo Leonard Barboza, Nichele Jakler, Borges Itamar
Department of Chemistry, Military Institute of Engineering, Praça General Tibúrcio 80, Rio de Janeiro, Brazil.
Institute of Chemical, Biological, Radiological and Nuclear Defense, Avenida das Américas 28705, Rio de Janeiro, Brazil.
J Mol Model. 2025 Jan 6;31(1):36. doi: 10.1007/s00894-024-06263-x.
Nitrocellulose, widely used in energetic materials, is prone to thermal and chemical degradation, compromising safety and performance. Stabilizers are molecules used in the composition of nitrocellulose-based propellants to inhibit the autocatalytic degradation process that produces nitrous gases and free nitric acids. Curcumin, (1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione, known for its antioxidant properties and a potential green stabilizer, was investigated using Density Functional Theory (DFT) focusing on its interaction with nitrogen dioxide. Two mechanisms were analyzed: aromatic ring nitration and free radical formation. The results indicate that nitration of the aromatic ring of curcumin and the formation of a curcumin-based free radical are viable. The computed Gibbs free activation energy (∆G°) and the activation enthalpy (∆H°) for two different temperatures, 298.15 K (room temperature) and 363.15 K (typical temperature in aging tests), are respectively 43.64 kcal/mol and 44.78 kcal/mol for the first reaction, and 31.54 kcal/mol and 35.31 kcal/mol for the second. The radical-based mechanism favors improved kinetics. These findings demonstrate curcumin's potential as an effective stabilizer, providing comparable performance to traditional compounds with lower environmental impact.
DFT calculations were carried out using Gaussian 09 and Orca 5.0.1 packages. The ωB97M-V, B3LYP, and M062X functionals were employed with the 6-311 + G(d) and 6-311G(d) basis sets. Solvent effects were modeled using the Conductor-like Polarizable Continuum Model (CPCM) and Solvation Model based on Density (SMD) continuum solvent models. Thermochemical data were computed using the same levels of calculation.
硝化纤维素广泛应用于含能材料中,容易发生热降解和化学降解,从而影响安全性和性能。稳定剂是用于硝化纤维素基推进剂组合物中的分子,以抑制产生亚硝酸气体和游离硝酸的自催化降解过程。姜黄素,即(1E,6E)-1,7-双(4-羟基-3-甲氧基苯基)-1,6-庚二烯-3,5-二酮,以其抗氧化性能和作为潜在的绿色稳定剂而闻名,使用密度泛函理论(DFT)对其与二氧化氮的相互作用进行了研究。分析了两种机制:芳环硝化和自由基形成。结果表明,姜黄素芳环的硝化和基于姜黄素的自由基的形成是可行的。在两个不同温度下,即298.15 K(室温)和363.15 K(老化试验中的典型温度),第一个反应的计算吉布斯自由活化能(∆G°)和活化焓(∆H°)分别为43.64 kcal/mol和44.78 kcal/mol,第二个反应分别为31.54 kcal/mol和35.31 kcal/mol。基于自由基的机制有利于改善动力学。这些发现证明了姜黄素作为有效稳定剂的潜力,其性能与传统化合物相当,但对环境的影响较小。
使用Gaussian 09和Orca 5.0.1软件包进行DFT计算。采用ωB97M-V、B3LYP和M062X泛函以及6-311+G(d)和6-311G(d)基组。使用类导体极化连续介质模型(CPCM)和基于密度的溶剂化模型(SMD)连续介质溶剂模型对溶剂效应进行建模。使用相同的计算水平计算热化学数据。