Suppr超能文献

以不同方式研究性别与孤独感。

Researching gender and loneliness differently.

作者信息

Barreto Manuela, Doyle David Matthew, Maes Marlies

机构信息

Department of Psychology, University of Exeter, Exeter, UK.

VUmc, Amsterdam UMC, Amsterdam, The Netherlands.

出版信息

Ann N Y Acad Sci. 2025 Feb;1544(1):55-64. doi: 10.1111/nyas.15283. Epub 2025 Jan 6.

Abstract

The majority of research on loneliness considers gender by comparing the loneliness reported by men and women. Drawing on current conceptualizations of gender and its effects, we propose alternative ways in which gender should be examined in relation to loneliness. To do so, we consider multiple gender-related factors and the role of the social environment, particularly societal ideologies about what gender is and how it should be expressed. We provide examples of how this expanded conceptualization can contribute to an improved understanding of loneliness by focusing on the impact of gender nonconformity, gendered life experiences, and couple relationships. We highlight the need for more research and evidence to fill existing gaps in understanding. We conclude that the field can move forward by considering the role of biological sex, gender identity, gender expression, gender roles, gender relational experiences, and sexual orientation, as well as the social norms against which these are experienced. To truly examine the role of gender in loneliness, we need to consider the normative context where some, but not others, are minoritized and marginalized, as well as move beyond binary notions of gender to include those with nonbinary, transgender, and intersex identities.

摘要

大多数关于孤独感的研究通过比较男性和女性报告的孤独感来考量性别因素。基于当前对性别的概念化理解及其影响,我们提出了一些关于应如何结合孤独感来审视性别的不同方法。为此,我们考量了多个与性别相关的因素以及社会环境的作用,尤其是关于性别是什么以及应如何表达的社会意识形态。我们通过聚焦性别不一致、具有性别特征的生活经历以及伴侣关系的影响,举例说明了这种扩展后的概念化理解如何有助于增进对孤独感的认识。我们强调需要更多的研究和证据来填补现有认知空白。我们得出结论,该领域可以通过考量生理性别、性别认同、性别表达、性别角色、性别关系经历和性取向的作用,以及人们在其中经历这些因素的社会规范来取得进展。为了真正审视性别在孤独感中的作用,我们需要考虑一些人(而非其他人)被边缘化和处于少数群体地位的规范背景,并且超越二元性别观念,将具有非二元、跨性别和双性人身份的群体纳入考量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1346/11829320/8979068f2dea/NYAS-1544-55-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验