Suppr超能文献

基于机器学习的原油-氮界面张力估算

Machine learning-based estimation of crude oil-nitrogen interfacial tension.

作者信息

Obaidur Rab Safia, Chandra Subhash, Kumar Abhinav, Patel Pinank, Al-Farouni Mohammed, Menon Soumya V, Alsehli Bandar R, Chahar Mamata, Singh Manmeet, Kiani Mahmood

机构信息

Central Labs, King Khalid University, P.O. Box 960, AlQura'a, Abha, Saudi Arabia.

Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.

出版信息

Sci Rep. 2025 Jan 7;15(1):1037. doi: 10.1038/s41598-025-85106-y.

Abstract

Accurate estimation of interfacial tension (IFT) between nitrogen and crude oil during nitrogen-based gas injection into oil reservoirs is imperative. The previous research works dealing with prediction of IFT of oil and nitrogen systems consider synthetic oil samples such n-alkanes. In this work, we aim to utilize eight machine learning methods of Decision Tree (DT), AdaBoost (AB), Random Forest (RF), K-nearest Neighbors (KNN), Ensemble Learning (EL), Support Vector Machine (SVM), Convolutional Neural Network (CNN) and Multilayer Perceptron Artificial Neural Network (MLP-ANN) to construct data-driven intelligent models to predict crude oil - nitrogen IFT based upon experimental data of real crude oils samples encountered in underground oil reservoirs. Several statistical indices and graphical approaches are used as accuracy performance indicators. The results show that virtually all the gathered datapoints are suitable for the purpose of model development. The sensitivity analysis indicated that pressure, temperature and crude oil API all negatively affect the IFT, with pressure being the most effective factor. The evaluation study proved that Random Forest is the most accurate developed intelligent model as it was characterized with acceptable R-squared (0.959), mean square error (1.65), average absolute relative error (6.85%) of unseen test datapoints as well as with correct trend prediction of IFT with regard to all input parameters of pressure, temperature and crude oil API. The developed model can be considered an accurate an easy-to-use tool for the prediction of crude oil/N IFT values for enhance oil recovery study optimization and upstream reservoir investigations.

摘要

在向油藏注入氮气的过程中,准确估算氮气与原油之间的界面张力(IFT)至关重要。以往关于油氮体系IFT预测的研究工作考虑的是合成油样,如正构烷烃。在本工作中,我们旨在利用决策树(DT)、自适应增强(AB)、随机森林(RF)、K近邻(KNN)、集成学习(EL)、支持向量机(SVM)、卷积神经网络(CNN)和多层感知器人工神经网络(MLP-ANN)这八种机器学习方法,基于地下油藏中实际原油样品的实验数据构建数据驱动的智能模型,以预测原油 - 氮气IFT。使用了几种统计指标和图形方法作为准确性性能指标。结果表明,几乎所有收集到的数据点都适用于模型开发。敏感性分析表明,压力、温度和原油API都对IFT有负面影响,其中压力是最有效的因素。评估研究证明,随机森林是最准确的智能模型,其未见测试数据点的决定系数(R平方)为0.959、均方误差为1.65、平均绝对相对误差为6.85%,并且对于压力、温度和原油API的所有输入参数,IFT的趋势预测正确。所开发的模型可被视为一种准确且易于使用的工具,用于预测原油/氮气IFT值,以优化提高采收率研究和上游油藏调查。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2941/11704299/186ae431565c/41598_2025_85106_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验