Suppr超能文献

青年自杀意念影响因素的评估与分析:一项使用弹性网络逻辑回归模型的大型队列研究

Assessment and analysis of factors influencing suicidal ideation in young adults: a large cohort study using an elastic network logistic regression model.

作者信息

Guo Zixuan, Han Xiaoli, Kong Tiantian, Wu Yan, Kang Yimin, Liu Yanlong, Wang Fan

机构信息

Beijing Hui-Long-Guan Hospital, Peking University, Beijing, 100096, China.

Clinical Nutrition Department, Friendship hospital of Urumqi, Urumqi, 830049, China.

出版信息

BMC Psychiatry. 2025 Jan 6;25(1):15. doi: 10.1186/s12888-024-06415-6.

Abstract

OBJECTIVES

This study aims to review and analyze factors associated with suicidal ideation to provide a rationale for subsequent effective interventions.

METHODS

Data from this study were obtained from the Assessing Nocturnal Sleep/Wake Effects on Risk of Suicide (ANSWERS). The University of Arizona evaluated 404 young adults aged 18-25 years using different scales. Then, general demographic data was recorded. An elastic network (EN) was used to optimize feature selection, combined with logistic regression, to determine the influencing factors associated with SI in young adults.

RESULTS

The EN regression retained 11 potential influencing factors with nonzero coefficients. In the multivariate logistic regression analysis, INQ-15 perceived burdensomeness (PB) scores (OR: 1.10, 95% CI: 1.04-1.17), CESD depression mood scores (OR: 1.16, 95% CI: 1.07-1.26), and age (OR: 0.72, 95% CI: 0.55-0.94) were significant factors for SI.

CONCLUSIONS

This is the first study to use an Elastic Network logistic regression model to assess the factors affecting suicidal ideation in young adults. Perceived Burdensome, depression, and age play an important risk role and are the best predictor combination of suicidal ideation in young adults, with depression being the most significant risk factor. Increased focus on Perceived Burdensome and negative emotions, along with simultaneous interventions for other potentially influential factors, can be more effective in preventing suicidal behavior in young adults.

摘要

目的

本研究旨在回顾和分析与自杀意念相关的因素,为后续有效的干预措施提供依据。

方法

本研究的数据来自评估夜间睡眠/觉醒对自杀风险的影响(ANSWERS)。亚利桑那大学使用不同量表对404名18至25岁的年轻人进行了评估。然后,记录了一般人口统计学数据。使用弹性网络(EN)优化特征选择,并结合逻辑回归,以确定与年轻人自杀意念相关的影响因素。

结果

EN回归保留了11个非零系数的潜在影响因素。在多变量逻辑回归分析中,INQ-15感知负担感(PB)得分(比值比:1.10,95%置信区间:1.04-1.17)、CESD抑郁情绪得分(比值比:1.16,95%置信区间:1.07-1.26)和年龄(比值比:0.72,95%置信区间:0.55-0.94)是自杀意念的显著因素。

结论

这是第一项使用弹性网络逻辑回归模型评估影响年轻人自杀意念因素的研究。感知负担感、抑郁和年龄起着重要的风险作用,是年轻人自杀意念的最佳预测因素组合,其中抑郁是最显著的风险因素。更多地关注感知负担感和负面情绪,同时对其他潜在影响因素进行干预,可能会更有效地预防年轻人的自杀行为。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d6c/11705669/103696d54756/12888_2024_6415_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验