Suppr超能文献

预期多基因风险评分(ePRS)框架:一种通过对祖先构成进行建模来量化多基因风险的公平指标。

The expected polygenic risk score (ePRS) framework: an equitable metric for quantifying polygenetic risk via modeling of ancestral makeup.

作者信息

Huang Yu-Jyun, Kurniansyah Nuzulul, Goodman Matthew O, Spitzer Brian W, Wang Jiongming, Stilp Adrienne, Laurie Cecelia, de Vries Paul S, Chen Han, Min Yuan-I, Sims Mario, Peloso Gina M, Guo Xiuqing, Bis Joshua C, Brody Jennifer A, Raffield Laura M, Smith Jennifer A, Zhao Wei, Rotter Jerome I, Rich Stephen S, Redline Susan, Fornage Myriam, Kaplan Robert, Franceschini Nora, Levy Daniel, Morrison Alanna C, Boerwinkle Eric, Smith Nicholas L, Kooperberg Charles, Psaty Bruce M, Zöllner Sebastian, Sofer Tamar

机构信息

Department of Medicine, Harvard Medical School, Boston, MA, USA.

CardioVascular Institute (CVI), Beth Israel Deaconess Medical Center, Boston, MA, USA.

出版信息

medRxiv. 2024 Dec 20:2024.03.05.24303738. doi: 10.1101/2024.03.05.24303738.

Abstract

Polygenic risk scores (PRSs) depend on genetic ancestry due to differences in allele frequencies between ancestral populations. This leads to implementation challenges in diverse populations. We propose a framework to calibrate PRS based on ancestral makeup. We define a metric called "expected PRS" (ePRS), the expected value of a PRS based on one's global or local admixture patterns. We further define the "residual PRS" (rPRS), measuring the deviation of the PRS from the ePRS. Simulation studies confirm that it suffices to adjust for ePRS to obtain nearly unbiased estimates of the PRS-outcome association without further adjusting for PCs. Using the TOPMed dataset, the estimated effect size of the rPRS adjusting for the ePRS is similar to the estimated effect of the PRS adjusting for genetic PCs. Similarly, we applied the ePRS framework to six cardiovascular-related traits in the All of Us dataset, and the results are consistent with those from the TOPMed analysis. The ePRS framework can protect from population stratification in association analysis and provide an equitable strategy to quantify genetic risk across diverse populations.

摘要

由于不同祖先群体之间等位基因频率的差异,多基因风险评分(PRSs)依赖于遗传血统。这给不同人群的应用带来了挑战。我们提出了一个基于祖先构成来校准PRS的框架。我们定义了一个名为“预期PRS”(ePRS)的指标,即基于一个人的全球或本地混合模式的PRS的期望值。我们进一步定义了“残差PRS”(rPRS),用于衡量PRS与ePRS的偏差。模拟研究证实,仅对ePRS进行调整就足以获得PRS与结果关联的近乎无偏估计,而无需进一步对主成分(PCs)进行调整。使用TOPMed数据集,对ePRS进行调整后的rPRS的估计效应大小与对遗传PCs进行调整后的PRS的估计效应相似。同样,我们将ePRS框架应用于“我们所有人”数据集中的六个心血管相关性状,结果与TOPMed分析的结果一致。ePRS框架可以在关联分析中防止群体分层,并提供一种公平的策略来量化不同人群的遗传风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4e0/11702733/eb8778cc61b5/nihpp-2024.03.05.24303738v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验