Weise Konstantin, Madsen Kristoffer H, Worbs Torge, Knösche Thomas R, Korshøj Anders, Thielscher Axel
Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
Methods and Development Group "Brain Networks", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
bioRxiv. 2024 Dec 20:2024.12.18.629095. doi: 10.1101/2024.12.18.629095.
Transcranial Electrical Stimulation (TES), Temporal Interference Stimulation (TIS), Electroconvulsive Therapy (ECT) and Tumor Treating Fields (TTFields) are based on the application of electric current patterns to the brain.
The optimal electrode positions, shapes and alignments for generating a desired current pattern in the brain vary between persons due to anatomical variability. The aim is to develop a flexible and efficient computational approach to determine individually optimal montages based on electric field simulations.
We propose a leadfield-free optimization framework that allows the electrodes to be placed freely on the head surface. It is designed for the optimization of montages with a low to moderate number of spatially extended electrodes or electrode arrays. Spatial overlaps are systematically prevented during optimization, enabling arbitrary electrode shapes and configurations. The approach supports maximizing the field intensity in target region-of-interests (ROI) and optimizing for a desired focality-intensity tradeoff.
We demonstrate montage optimization for standard two-electrode TES, focal center-surround TES, TIS, ECT and TTFields. Comparisons against reference simulations are used to validate the performance of the algorithm. The system requirements are kept moderate, allowing the optimization to run on regular notebooks and promoting its use in basic and clinical research.
The new framework complements existing optimization methods that require small electrodes, a predetermined discretization of the electrode positions on the scalp and work best for multi-channel systems. It strongly extends the possibilities to optimize electrode montages towards application-specific aims and supports researchers in discovering innovative stimulation schemes. The framework is available in SimNIBS.
经颅电刺激(TES)、颞部干扰刺激(TIS)、电休克治疗(ECT)和肿瘤治疗电场(TTFields)均基于向大脑施加电流模式。
由于解剖结构的变异性,在大脑中产生所需电流模式的最佳电极位置、形状和排列因人而异。目的是开发一种灵活高效的计算方法,基于电场模拟确定个体最优的电极组合。
我们提出了一种无导联场优化框架,允许电极自由放置在头部表面。它专为优化具有少量到中等数量的空间扩展电极或电极阵列的电极组合而设计。在优化过程中系统地防止空间重叠,从而实现任意电极形状和配置。该方法支持在目标感兴趣区域(ROI)中最大化场强,并针对所需的聚焦-强度权衡进行优化。
我们展示了标准双电极TES、聚焦中心-环绕TES、TIS、ECT和TTFields的电极组合优化。与参考模拟进行比较以验证算法的性能。系统要求保持适中,允许在普通笔记本电脑上运行优化,并促进其在基础研究和临床研究中的应用。
新框架补充了现有的优化方法,这些方法需要小电极、头皮上电极位置的预定离散化,并且最适用于多通道系统。它极大地扩展了朝着特定应用目标优化电极组合的可能性,并支持研究人员发现创新的刺激方案。该框架可在SimNIBS中使用。