Kiewisz Robert, Fabig Gunar, Conway Will, Johnston Jake, Kostyuchenko Victor A, Bařinka Cyril, Clarke Oliver, Magaj Magdalena, Yazdkhasti Hossein, Vallese Francesca, Lok Shee-Mei, Redemann Stefanie, Müller-Reichert Thomas, Bepler Tristan
Simons Machine Learning Center, New York Structural Biology Center, New York, United States.
Simons Electron Microscopy Center, New York Structural Biology Center, New York, United States.
bioRxiv. 2024 Dec 20:2024.12.19.629196. doi: 10.1101/2024.12.19.629196.
It is now possible to generate large volumes of high-quality images of biomolecules at near-atomic resolution and in near-native states using cryogenic electron microscopy/electron tomography (Cryo-EM/ET). However, the precise annotation of structures like filaments and membranes remains a major barrier towards applying these methods in high-throughput. To address this, we present TARDIS (ransformer-bsed apid imensionless nstance egmentation), a machine-learning framework for fast and accurate annotation of micrographs and tomograms. TARDIS combines deep learning for semantic segmentation with a novel geometric model for precise instance segmentation of various macromolecules. We develop pre-trained models within TARDIS for segmenting microtubules and membranes, demonstrating high accuracy across multiple modalities and resolutions, enabling segmentation of over 13,000 tomograms from the CZI Cryo-Electron Tomography data portal. As a modular framework, TARDIS can be extended to new structures and imaging modalities with minimal modification. TARDIS is open-source and freely available at https://github.com/SMLC-NYSBC/TARDIS, and accelerates analysis of high-resolution biomolecular structural imaging data.
现在,使用低温电子显微镜/电子断层扫描(Cryo-EM/ET)能够以接近原子分辨率和接近天然状态生成大量高质量的生物分子图像。然而,诸如细丝和膜等结构的精确注释仍然是将这些方法应用于高通量领域的主要障碍。为了解决这个问题,我们提出了TARDIS(基于Transformer的快速无量纲实例分割),这是一个用于快速准确注释显微照片和断层图像的机器学习框架。TARDIS将用于语义分割的深度学习与用于各种大分子精确实例分割的新型几何模型相结合。我们在TARDIS中开发了用于分割微管和膜的预训练模型,展示了在多种模态和分辨率下的高精度,能够对来自CZI低温电子断层扫描数据门户的13000多张断层图像进行分割。作为一个模块化框架,TARDIS可以以最小的修改扩展到新的结构和成像模态。TARDIS是开源的,可在https://github.com/SMLC-NYSBC/TARDIS上免费获取,并加速了对高分辨率生物分子结构成像数据的分析。