Roy Gitanjali, Ordóñez Andrea, Binns Derk D, Rodrigues Dos Santos Karina, Kwakye Michael B, King George C, Mukherjee Noyonika, Templin Andrew T, Tan Zhiyong, Richardson Timothy I, Doud Emma H, Mosley Amber L, Emfinger Christopher H, Attie Alan D, Keller Mark P, Johnson Travis S, Kalwat Michael A
bioRxiv. 2024 Dec 26:2024.12.26.629558. doi: 10.1101/2024.12.26.629558.
Obesity, insulin resistance, and a host of environmental and genetic factors can drive hyperglycemia, causing β-cells to compensate by increasing insulin production and secretion. In type 2 diabetes (T2D), β-cells under these conditions eventually fail. Rare β-cell diseases like congenital hyperinsulinism (HI) also cause inappropriate insulin secretion, and some HI patients develop diabetes. However, the mechanisms of insulin hypersecretion and how it causes β-cell dysfunction are not fully understood. We previously discovered small molecules (e.g. SW016789) that cause insulin hypersecretion and lead to a loss in β-cell function without cell death. Here, we uncover the protein target of SW016789 and provide the first time-course transcriptomic analysis of hypersecretory responses versus thapsigargin-mediated ER stress in β-cells. In mouse MIN6 and human EndoC-βH1 β-cells, we identified and validated VDAC1 as a SW016789 target using photoaffinity proteomics, cellular thermal shift assays, siRNA, and small molecule inhibitors. SW016789 raises membrane potential to enhance Ca influx, potentially through VDAC1. Chronically elevated intracellular Ca appears to underpin the negative impacts of hypersecretion, as nifedipine protected against each small molecule hypersecretion inducer we tested. Using time- course RNAseq, we discovered that hypersecretion induced a distinct transcriptional pattern compared to ER stress. Clustering analyses led us to focus on ER-associated degradation (ERAD) as a potential mediator of the adaptive response. SW016789 reduced the abundance of ERAD substrate OS-9 and pharmacological inhibition of ERAD worsened β-cell survival in response to hypersecretory stress. Changes in other ERAD components in MIN6 and EndoC-βH1 at the protein level were minor with either SW016789 or thapsigargin. However, immunostaining for core ERAD components SEL1L, HRD1, and DERL3 in non-diabetic and T2D human pancreas revealed altered distributions of SEL1L/HRD1 and SEL1L/DERL3 rations in β-cells of T2D islets, in alignment with altered ERAD in stressed β-cells. We conclude that hypersecretory stimuli, including SW016789- mediated VDAC1 activation, cause enhanced Ca influx and insulin release. Subsequent differential gene expression represents a β-cell hypersecretory response signature that is reflected at the protein level for some, but not all genes. A better understanding of how β-cells induce hypersecretion and the mechanisms of negative feedback on secretory rate may lead to the discovery of novel therapeutic targets for T2D and HI.
肥胖、胰岛素抵抗以及一系列环境和遗传因素可导致血糖升高,促使β细胞通过增加胰岛素生成和分泌来进行代偿。在2型糖尿病(T2D)中,处于这些条件下的β细胞最终会功能衰竭。像先天性高胰岛素血症(HI)这样的罕见β细胞疾病也会导致不适当的胰岛素分泌,一些HI患者会发展为糖尿病。然而,胰岛素分泌过多的机制以及它如何导致β细胞功能障碍尚未完全明确。我们之前发现了一些小分子(如SW016789),它们可导致胰岛素分泌过多并导致β细胞功能丧失但不会引起细胞死亡。在此,我们揭示了SW016789的蛋白质靶点,并首次对β细胞中分泌过多反应与毒胡萝卜素介导的内质网应激进行了时间进程转录组分析。在小鼠MIN6和人EndoC-βH1β细胞中,我们使用光亲和蛋白质组学、细胞热迁移分析、小干扰RNA和小分子抑制剂鉴定并验证了电压依赖性阴离子通道1(VDAC1)是SW016789的靶点。SW016789可升高膜电位以增强钙离子内流,可能是通过VDAC1实现的。细胞内钙离子长期升高似乎是分泌过多产生负面影响的基础,因为硝苯地平可保护细胞免受我们测试的每种小分子分泌过多诱导剂的影响。通过时间进程RNA测序,我们发现与内质网应激相比,分泌过多诱导了一种独特的转录模式。聚类分析使我们将重点放在内质网相关降解(ERAD)作为适应性反应的潜在介导因素上。SW016789降低了ERAD底物OS-9的丰度,对ERAD的药理学抑制会使β细胞在分泌过多应激下的存活情况恶化。无论是SW016789还是毒胡萝卜素,MIN6和EndoC-βH1中其他ERAD成分在蛋白质水平的变化都很小。然而,对非糖尿病和T2D患者胰腺中ERAD核心成分SEL1L、HRD1和DERL3进行免疫染色发现,T2D胰岛β细胞中SEL1L/HRD1和SEL1L/DERL3比例的分布发生了改变,这与应激β细胞中ERAD的改变一致。我们得出结论,包括SW016789介导的VDAC1激活在内的分泌过多刺激会导致钙离子内流增强和胰岛素释放增加。随后的差异基因表达代表了一种β细胞分泌过多反应特征,对于一些但并非所有基因而言,这种特征在蛋白质水平上也有体现。更好地理解β细胞如何诱导分泌过多以及分泌速率负反馈的机制,可能会促成发现针对T2D和HI的新型治疗靶点。