Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA.
Department of Radiology, Stanford University, Stanford, CA, USA.
Neuroimage. 2021 Dec 15;245:118658. doi: 10.1016/j.neuroimage.2021.118658. Epub 2021 Oct 14.
Recent studies have demonstrated that fast fMRI can track neural activity well above the temporal limit predicted by the canonical hemodynamic response model. While these findings are promising, the biophysical mechanisms underlying these fast fMRI phenomena remain underexplored. In this study, we discuss two aspects of the hemodynamic response, complementary to several existing hypotheses, that can accommodate faster fMRI dynamics beyond those predicted by the canonical model. First, we demonstrate, using both visual and somatosensory paradigms, that the timing and shape of hemodynamic response functions (HRFs) vary across graded levels of stimulus intensity-with lower-intensity stimulation eliciting faster and narrower HRFs. Second, we show that as the spatial resolution of fMRI increases, voxel-wise HRFs begin to deviate from the canonical model, with a considerable portion of voxels exhibiting faster temporal dynamics than predicted by the canonical HRF. Collectively, both stimulus/task intensity and image resolution can affect the sensitivity of fMRI to fast brain activity, which may partly explain recent observations of fast fMRI signals. It is further noteworthy that, while the present investigations focus on fast neural responses, our findings suggest that a revised hemodynamic model may benefit the many fMRI studies using paradigms with wide ranges of contrast levels (e.g., resting or naturalistic conditions) or with modern, high-resolution MR acquisitions.
最近的研究表明,快速 fMRI 能够很好地追踪神经活动,其速度超过了经典血流动力学响应模型所预测的时间限制。虽然这些发现很有前景,但这些快速 fMRI 现象背后的生物物理机制仍未得到充分探索。在这项研究中,我们讨论了血流动力学响应的两个方面,它们与几个现有的假设互补,可以适应超出经典模型预测的更快 fMRI 动力学。首先,我们使用视觉和体感感觉范式证明,血流动力学响应函数 (HRF) 的时间和形状随刺激强度的梯度变化而变化——低强度刺激引发更快和更窄的 HRF。其次,我们表明,随着 fMRI 的空间分辨率增加,体素级 HRF 开始偏离经典模型,相当一部分体素表现出比经典 HRF 预测更快的时间动态。总的来说,刺激/任务强度和图像分辨率都可以影响 fMRI 对快速脑活动的敏感性,这可能部分解释了最近观察到的快速 fMRI 信号。更值得注意的是,虽然目前的研究集中在快速神经反应上,但我们的发现表明,修订后的血流动力学模型可能有益于许多使用对比度水平广泛的范式(例如,休息或自然条件)或使用现代高分辨率 MR 采集的 fMRI 研究。