Suppr超能文献

使用TopKAT在多重空间蛋白质组学成像中检测临床相关拓扑结构

Detecting Clinically Relevant Topological Structures in Multiplexed Spatial Proteomics Imaging Using TopKAT.

作者信息

Samorodnitsky Sarah, Campbell Katie, Little Amarise, Ling Wodan, Zhao Ni, Chen Yen-Chi, Wu Michael C

机构信息

Public Health Sciences Division, Fred Hutchinson Cancer Center.

SWOG Statistics and Data Management Center.

出版信息

bioRxiv. 2024 Dec 21:2024.12.18.628976. doi: 10.1101/2024.12.18.628976.

Abstract

Novel multiplexed spatial proteomics imaging platforms expose the spatial architecture of cells in the tumor microenvironment (TME). The diverse cell population in the TME, including its spatial context, has been shown to have important clinical implications, correlating with disease prognosis and treatment response. The accelerating implementation of spatial proteomic technologies motivates new statistical models to test if cell-level images associate with patient-level endpoints. Few existing methods can robustly characterize the geometry of the spatial arrangement of cells and also yield both a valid and powerful test for association with patient-level outcomes. We propose a topology-based approach that combines persistent homology with kernel testing to determine if topological structures created by cells predict continuous, binary, or survival clinical endpoints. We term our method TopKAT (Topological Kernel Association Test) and show that it can be more powerful than statistical tests grounded in the spatial point process model, particularly when cells arise along the boundary of a ring. We demonstrate the properties of TopKAT through simulation studies and apply it to two studies of triple negative breast cancer where we show that TopKAT recovers clinically relevant topological structures in the spatial distribution of immune and tumor cells.

摘要

新型多重空间蛋白质组学成像平台揭示了肿瘤微环境(TME)中细胞的空间结构。TME中的多种细胞群体,包括其空间背景,已被证明具有重要的临床意义,与疾病预后和治疗反应相关。空间蛋白质组学技术的加速应用促使人们建立新的统计模型,以检验细胞水平的图像是否与患者水平的终点相关。现有的方法很少能稳健地表征细胞空间排列的几何形状,也很少能对与患者水平结局的关联进行有效且有力的检验。我们提出了一种基于拓扑的方法,该方法将持久同调与核检验相结合,以确定细胞形成的拓扑结构是否能预测连续、二元或生存临床终点。我们将我们的方法称为TopKAT(拓扑核关联检验),并表明它比基于空间点过程模型的统计检验更强大,特别是当细胞沿环的边界出现时。我们通过模拟研究展示了TopKAT的特性,并将其应用于两项三阴性乳腺癌研究,结果表明TopKAT在免疫细胞和肿瘤细胞的空间分布中恢复了临床相关的拓扑结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92f1/11702633/2fed12f26a5f/nihpp-2024.12.18.628976v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验