Rahmatallah Yasir, Kemp Aaron, Iyer Anu, Pillai Lakshmi, Larson-Prior Linda, Virmani Tuhin, Prior Fred
University of Arkansas for Medical Sciences.
Georgia Institute of Technology.
Res Sq. 2024 Dec 18:rs.3.rs-5348708. doi: 10.21203/rs.3.rs-5348708/v1.
Machine learning approaches including deep learning models have shown promising performance in the automatic detection of Parkinson's disease. These approaches rely on different types of data with voice recordings being the most used due to the convenient and non-invasive nature of data acquisition. Our group has successfully developed a novel approach that uses convolutional neural network with transfer learning to analyze spectrogram images of the sustained vowel /a/ to identify people with Parkinson's disease. We tested this approach by collecting a dataset of voice recordings via telephone lines, which have limited bandwidth. This study builds upon our prior results in two major ways: First, we tested the performance of our approach on a larger voice dataset recorded using smartphones with wide bandwidth. Our results show comparable performance between two datasets generated using different recording platforms where we report differences in most important features resulting from the limited bandwidth of telephonic lines. Second, we compared the classification performance achieved using linear-scale and mel-scale spectrogram images and showed a small but statistically significant gain using mel-scale spectrograms. The convolutional neural network with transfer learning approach showed superior performance against conventional machine learning methods that collapse measurements across time to generate feature vectors.
包括深度学习模型在内的机器学习方法在帕金森病的自动检测中已显示出有前景的性能。这些方法依赖于不同类型的数据,由于数据采集方便且无创,语音记录是使用最多的。我们团队成功开发了一种新颖的方法,该方法使用带有迁移学习的卷积神经网络来分析持续元音/a/的频谱图图像,以识别帕金森病患者。我们通过电话线收集语音记录数据集来测试这种方法,电话线的带宽有限。本研究在两个主要方面基于我们之前的结果:第一,我们在使用具有宽带宽的智能手机录制的更大语音数据集上测试了我们方法的性能。我们的结果表明,使用不同录制平台生成的两个数据集之间具有可比的性能,我们报告了由于电话线带宽有限而导致的最重要特征的差异。第二,我们比较了使用线性尺度和梅尔尺度频谱图图像实现的分类性能,并表明使用梅尔尺度频谱图有微小但具有统计学意义的提升。带有迁移学习方法的卷积神经网络相对于传统机器学习方法表现出卓越的性能,传统机器学习方法会跨时间合并测量值以生成特征向量。