Suppr超能文献

使用ctSVG识别细胞类型特异性空间可变基因。

Identifying cell-type-specific spatially variable genes with ctSVG.

作者信息

Zhuang Haotian, Shang Xinyi, Hou Wenpin, Ji Zhicheng

机构信息

Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA.

Department of Biostatistics, Columbia University Mailman School of Public Health, New York City, NY, USA.

出版信息

Res Sq. 2024 Dec 19:rs.3.rs-5655066. doi: 10.21203/rs.3.rs-5655066/v1.

Abstract

Spatially variable genes (SVGs) reveal the molecular and functional heterogeneity of cells across different spatial regions of a tissue. We found that sample-wide SVGs, identified by previous methods across the whole sample, largely overlap with cell-type marker genes derived from single-cell gene expression, leaving the spatial location information largely underutilized. We developed ctSVG, a computational method specifically tailored for Visium HD spatial transcriptomics at single-cell resolution. ctSVG accurately assigns Visium squares to cells and identifies cell-type-specific SVGs. We show that cell-type-specific SVGs identified by ctSVG include many new genes that do not overlap with sample-wide SVGs or cell-type marker genes, and that these genes reveal important biological functions in real spatial datasets.

摘要

空间可变基因(SVGs)揭示了组织不同空间区域细胞的分子和功能异质性。我们发现,通过先前方法在整个样本中鉴定出的全样本SVGs,与源自单细胞基因表达的细胞类型标记基因有很大重叠,从而导致空间位置信息在很大程度上未得到充分利用。我们开发了ctSVG,这是一种专门针对单细胞分辨率的Visium HD空间转录组学量身定制的计算方法。ctSVG能准确地将Visium方格分配给细胞,并识别细胞类型特异性的SVGs。我们表明,ctSVG鉴定出的细胞类型特异性SVGs包括许多与全样本SVGs或细胞类型标记基因不重叠的新基因,并且这些基因在真实空间数据集中揭示了重要的生物学功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95eb/11702777/734e451b5ac3/nihpp-rs5655066v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验