Suppr超能文献

GAADE:基于自适应图注意力网络识别空间可变基因。

GAADE: identification spatially variable genes based on adaptive graph attention network.

作者信息

Zhang Tianjiao, Sun Hao, Wu Zhenao, Zhao Zhongqian, Zhao Xingjie, Zhang Hongfei, Gao Bo, Wang Guohua

机构信息

College of Computer and Control Engineering, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China.

Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin 150081, China.

出版信息

Brief Bioinform. 2024 Nov 22;26(1). doi: 10.1093/bib/bbae669.

Abstract

The rapid advancement of spatial transcriptomics (ST) sequencing technology has made it possible to capture gene expression with spatial coordinate information at the cellular level. Although many methods in ST data analysis can detect spatially variable genes (SVGs), these methods often fail to identify genes with explicit spatial expression patterns due to the lack of consideration for spatial domains. Considering spatial domains is crucial for identifying SVGs as it focuses the analysis of gene expression changes on biologically relevant regions, aiding in the more accurate identification of SVGs associated with specific cell types. Existing methods for identifying SVGs based on spatial domains predefine spot similarity before training, which prevents adaptive learning and limits generalizability across different tissues or samples. This limitation may also lead to inaccurate identification of specific genes at boundary regions. To address these issues, we present GAADE, an unsupervised neural network architecture based on graph-structured data representation learning. GAADE stacks encoder/decoder layers and integrates a self-attention mechanism to reconstruct node attributes and graph structure, effectively capturing spatial domain structures of different sections. Consequently, we confine the identification of SVGs within spatial domains. By performing differential expression analysis on spots within the target spatial domain and their multi-order neighbors, GAADE detects genes with enriched expression patterns within defined domains. Comparative evaluations with five other popular methods on ST datasets across four different species, regions and tissues demonstrate that GAADE exhibits superior performance in detecting SVGs and capturing the extent of spatial gene expression variation.

摘要

空间转录组学(ST)测序技术的快速发展使得在细胞水平上捕获带有空间坐标信息的基因表达成为可能。尽管ST数据分析中的许多方法都能检测到空间可变基因(SVG),但由于缺乏对空间域的考虑,这些方法往往无法识别具有明确空间表达模式的基因。考虑空间域对于识别SVG至关重要,因为它将基因表达变化的分析聚焦于生物学相关区域,有助于更准确地识别与特定细胞类型相关的SVG。现有的基于空间域识别SVG的方法在训练前预先定义斑点相似性,这阻碍了自适应学习,并限制了在不同组织或样本中的通用性。这种局限性还可能导致在边界区域对特定基因的识别不准确。为了解决这些问题,我们提出了GAADE,一种基于图结构数据表示学习的无监督神经网络架构。GAADE堆叠编码器/解码器层,并集成自注意力机制来重建节点属性和图结构,有效地捕获不同切片的空间域结构。因此,我们将SVG的识别限制在空间域内。通过对目标空间域内的斑点及其多阶邻居进行差异表达分析,GAADE检测出在定义域内具有富集表达模式的基因。在跨越四个不同物种、区域和组织的ST数据集上与其他五种流行方法进行的比较评估表明,GAADE在检测SVG和捕获空间基因表达变化程度方面表现出卓越的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a96/11658817/cc68d91570a4/bbae669f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验