Qiu Yuze, Yan Chunfei, Zhang Yan, Yang Shengxuan, Yao Xiang, Ai Fawen, Zheng Jinjin, Zhang Shiwu, Yu Xinge, Dong Erbao
Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China.
Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China.
Natl Sci Rev. 2024 Nov 15;12(1):nwae413. doi: 10.1093/nsr/nwae413. eCollection 2025 Jan.
Affordable high-resolution cameras and state-of-the-art computer vision techniques have led to the emergence of various vision-based tactile sensors. However, current vision-based tactile sensors mainly depend on geometric optics or marker tracking for tactile assessments, resulting in limited performance. To solve this dilemma, we introduce optical interference patterns as the visual representation of tactile information for flexible tactile sensors. We propose a novel tactile perception method and its corresponding sensor, combining structural colors from flexible blazed gratings with deep learning. The richer structural colors and finer data processing foster the tactile estimation performance. The proposed sensor has an overall normal force magnitude accuracy of 6 mN, a planar resolution of 79 μm and a contact-depth resolution of 25 μm. This work presents a promising tactile method that combines wave optics, soft materials and machine learning. It performs well in tactile measurement, and can be expanded into multiple sensing fields.
价格实惠的高分辨率相机和先进的计算机视觉技术催生了各种基于视觉的触觉传感器。然而,当前基于视觉的触觉传感器主要依靠几何光学或标记跟踪进行触觉评估,导致性能有限。为了解决这一困境,我们引入光学干涉图案作为柔性触觉传感器触觉信息的视觉表示。我们提出了一种新颖的触觉感知方法及其相应的传感器,将柔性闪耀光栅的结构色与深度学习相结合。更丰富的结构色和更精细的数据处理提升了触觉估计性能。所提出的传感器的整体法向力大小精度为6毫牛,平面分辨率为79微米,接触深度分辨率为25微米。这项工作提出了一种将波动光学、软材料和机器学习相结合的有前景的触觉方法。它在触觉测量中表现良好,并且可以扩展到多个传感领域。