Ghawri Bhaskar, Bastante Pablo, Watanabe Kenji, Taniguchi Takashi, Calame Michel, Perrin Mickael L, Zhang Jian
Transport at Nanoscale Interfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.
Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
Nanoscale. 2025 Feb 13;17(7):4030-4037. doi: 10.1039/d4nr02824d.
Magic-angle twisted bilayer graphene (TBLG) has emerged as a versatile platform to explore correlated electron phases driven primarily by low-energy flat bands in moiré superlattices. While techniques for controlling the twist angle between graphene layers have spurred rapid experimental progress, understanding the effects of doping inhomogeneity on electronic transport in correlated electron systems remains challenging. In this work, we investigate the interplay of confinement and doping inhomogeneity on the electrical transport properties of TBLG by leveraging device dimensions and twist angles. We show that reducing device dimensions can magnify disorder potentials caused by doping inhomogeneity, resulting in pronounced carrier confinement. This phenomenon is evident in charge transport measurements, where the Coulomb blockade effect is observed. Temperature-dependent measurements reveal a large variation in the activation gap across the device. These findings highlight the critical role of doping inhomogeneity in TBLG and its significant impact on the transport properties of the system.
魔角扭曲双层石墨烯(TBLG)已成为一个多功能平台,用于探索主要由莫尔超晶格中的低能平带驱动的关联电子相。虽然控制石墨烯层间扭曲角的技术推动了快速的实验进展,但理解掺杂不均匀性对关联电子系统中电子输运的影响仍然具有挑战性。在这项工作中,我们通过利用器件尺寸和扭曲角来研究限制和掺杂不均匀性对TBLG电输运性质的相互作用。我们表明,减小器件尺寸可以放大由掺杂不均匀性引起的无序势,从而导致明显的载流子限制。这种现象在电荷输运测量中很明显,其中观察到了库仑阻塞效应。温度相关测量揭示了整个器件的激活能隙有很大变化。这些发现突出了掺杂不均匀性在TBLG中的关键作用及其对系统输运性质的重大影响。