Arendshorst Willaim J, Vendrov Aleksandr E, Kumar Nitin, Ganesh Santhi K, Madamanchi Nageswara R
Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA.
Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
Antioxidants (Basel). 2024 Nov 27;13(12):1454. doi: 10.3390/antiox13121454.
Hypertension (HTN) is a major contributor to kidney damage, leading to conditions such as nephrosclerosis and hypertensive nephropathy, significant causes of chronic kidney disease (CKD) and end-stage renal disease (ESRD). HTN is also a risk factor for stroke and coronary heart disease. Oxidative stress, inflammation, and activation of the renin-angiotensin-aldosterone system (RAAS) play critical roles in causing kidney injury in HTN. Genetic and environmental factors influence the susceptibility to hypertensive renal damage, with African American populations having a higher tendency due to genetic variants. Managing blood pressure (BP) effectively with treatments targeting RAAS activation, oxidative stress, and inflammation is crucial in preventing renal damage and the progression of HTN-related CKD and ESRD. Interactions between genetic and environmental factors impacting kidney function abnormalities are central to HTN development. Animal studies indicate that genetic factors significantly influence BP regulation. Anti-natriuretic mechanisms can reset the pressure-natriuresis relationship, requiring a higher BP to excrete sodium matched to intake. Activation of intrarenal angiotensin II receptors contributes to sodium retention and high BP. In HTN, the gut microbiome can affect BP by influencing energy metabolism and inflammatory pathways. Animal models, such as the spontaneously hypertensive rat and the chronic angiotensin II infusion model, mirror human essential hypertension and highlight the significance of the kidney in HTN pathogenesis. Overproduction of reactive oxygen species (ROS) plays a crucial role in the development and progression of HTN, impacting renal function and BP regulation. Targeting specific NADPH oxidase (NOX) isoforms to inhibit ROS production and enhance antioxidant mechanisms may improve renal structure and function while lowering blood pressure. Therapies like SGLT2 inhibitors and mineralocorticoid receptor antagonists have shown promise in reducing oxidative stress, inflammation, and RAAS activity, offering renal and antihypertensive protection in managing HTN and CKD. This review emphasizes the critical role of NOX in the development and progression of HTN, focusing on its impact on renal function and BP regulation. Effective BP management and targeting oxidative stress, inflammation, and RAAS activation, is crucial in preventing renal damage and the progression of HTN-related CKD and ESRD.
高血压(HTN)是导致肾脏损伤的主要因素,可引发肾硬化和高血压肾病等病症,这些病症是慢性肾脏病(CKD)和终末期肾病(ESRD)的重要病因。HTN也是中风和冠心病的危险因素。氧化应激、炎症以及肾素-血管紧张素-醛固酮系统(RAAS)的激活在HTN导致肾脏损伤的过程中起着关键作用。遗传和环境因素影响对高血压性肾损伤的易感性,由于基因变异,非裔美国人群体具有更高的患病倾向。通过针对RAAS激活、氧化应激和炎症的治疗来有效控制血压(BP),对于预防肾脏损伤以及HTN相关的CKD和ESRD的进展至关重要。影响肾功能异常的遗传和环境因素之间的相互作用是HTN发生发展的核心。动物研究表明,遗传因素对血压调节有显著影响。抗利钠机制可重置压力-利钠关系,需要更高的血压才能排出与摄入量相匹配的钠。肾内血管紧张素II受体的激活会导致钠潴留和高血压。在HTN中,肠道微生物群可通过影响能量代谢和炎症途径来影响血压。动物模型,如自发性高血压大鼠和慢性血管紧张素II输注模型,反映了人类原发性高血压,并突出了肾脏在HTN发病机制中的重要性。活性氧(ROS)的过度产生在HTN的发生和发展中起关键作用,影响肾功能和血压调节。靶向特定的烟酰胺腺嘌呤二核苷酸磷酸氧化酶(NOX)亚型以抑制ROS产生并增强抗氧化机制,可能会改善肾脏结构和功能,同时降低血压。钠-葡萄糖协同转运蛋白2(SGLT2)抑制剂和盐皮质激素受体拮抗剂等疗法在降低氧化应激、炎症和RAAS活性方面显示出前景,在管理HTN和CKD方面提供肾脏和降压保护。本综述强调了NOX在HTN发生和发展中的关键作用,重点关注其对肾功能和血压调节的影响。有效的血压管理以及针对氧化应激、炎症和RAAS激活,对于预防肾脏损伤以及HTN相关的CKD和ESRD的进展至关重要。