Suppr超能文献

ncRNAs 和多酚:高血压的新治疗策略。

ncRNAs and polyphenols: new therapeutic strategies for hypertension.

机构信息

Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.

Department of Cardiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.

出版信息

RNA Biol. 2022;19(1):575-587. doi: 10.1080/15476286.2022.2066335. Epub 2021 Dec 31.

Abstract

Polyphenols have gained significant attention in protecting several chronic diseases, such as cardiovascular diseases (CVDs). Accumulating evidence indicates that polyphenols have potential protective roles for various CVDs. Hypertension (HTN) is among the hazardous CVDs accounting for nearly 8.5 million deaths worldwide. HTN is a complex and multifactorial disease and a combination of genetic susceptibility and environmental factors play major roles in its development. However, the underlying regulatory mechanisms are still elusive. Polyphenols have shown to cause favourable and beneficial effects in the management of HTN. Noncoding RNAs (ncRNAs) as influential mediators in modulating the biological properties of polyphenols, have shown significant footprints in CVDs. ncRNAs control basic functions in virtually all cell types relevant to the cardiovascular system and, thus, a direct link with blood pressure (BP) regulation is highly probable. Recent evidence suggests that a number of ncRNAs, including main small ncRNAs, microRNAs (miRNAs) and long ncRNAs (lncRNAs), play crucial roles with respect to the antihypertensive effects of polyphenols. Indeed, targeting lncRNAs by polyphenols will be a novel and promising strategy in the management of HTN. Herein, we reviewed the effects of polyphenols in HTN. Additionally, we emphasized on the potential effects of polyphenols on regulations of main ncRNAs, which imply the role of polyphenols in regulating ncRNAs in order to exert protective effects and thus proposing them as new targets for HTN treatment. CVD: cardiovascular disease; BP: blood pressure; HTN: hypertension, lncRNAs: long noncoding RNAs; p38-MAPK: p38-mitogenactivated protein kinase; OPCs: oligomeric procyanidins; GTP: guanosine triphosphate; ROS: reactive oxygen species; cGMP: cyclic guanosine monophosphate; SGC: soluble guanylate cyclase; PI3K: phosphatidylinositol 3-kinase; cGMP: Cyclic GMP; eNOS: endothelial NO synthase; ERK ½: extracellular signal-regulated kinase ½; L-Arg: L-Arginine; MAPK: mitogen-activated protein kinases; NO: Nitric oxide; P: Phosphorus; PDK1: Phosphoinositide-dependent kinase 1; PI3-K: Phosphatidylinositol 3-kinase; PIP2: Phosphatidylinositol diphosphate; ncRNAs: non-protein-coding RNA; miRNAs: microRNAs; OPCs: oligomeric procyanidins; RES: resveratrol; GE: grape extract; T2DM: type 2 diabetes mellitus; IL: interleukin; TNF-α: tumour necrosis factor-alpha; NF-κB: nuclear factor NF-kappa-B; ALP: alkaline phosphatase; PARP1: poly [ADP-ribose] polymerase 1; HIF1a: Hypoxia-inducible-factor 1A; NFATc2: nuclear factor of activated T cells 2; PAD: peripheral artery disease; SHR: spontaneously hypertensive rat; RAAS: renin-angiotensin-aldosterone system; ATR: angiotensin type-1 receptor; Nox: NADPH oxidase; HO-1: haem oxygenase-1; JAK/STAT: Janus kinase/signal transducers/activators of the transcription; PNS: panax notoginseng saponin; snoRNA: small nucleolar RNA; hnRNA: heterogeneous nuclear RNA; VSMCs: vascular smooth muscle cells; irf7: interferon regulatory factor 7; limo2: LIM only domain 2; GWAS: genome-wide association study; GAS5: Growth arrest-specific 5; Asb3, Ankyrin repeat and SPCS box containing 3; Chac2: cation transport regulator homolog 2; Pex11b: peroxisomal membrane 11B; Sp5: Sp5 transcription factor; EGCG: epigallocatechin gallate; ApoE: Apo lipoprotein E; ERK-MAP kinase: extracellular signal-regulated kinases-mitogen-activated protein kinase; PAH: pulmonary artery hypertension; PAP: pulmonary arterial pressure; HIF1a: hypoxia-inducible-factor 1A; NFATc2: nuclear factor of activated T cells 2; HMEC-1: Human microvascular endothelial cells; stat2: signal transducers and activators of transcription 2; JNK: c-Jun N-terminal kinase; iNOS: inducible NO synthase. SNP: single nucleotide polymorphism; CAD: coronary artery disease.

摘要

多酚在保护多种慢性疾病方面引起了广泛关注,如心血管疾病 (CVDs)。越来越多的证据表明,多酚对各种 CVDs 具有潜在的保护作用。高血压 (HTN) 是一种危险的 CVDs,占全球近 850 万人死亡。HTN 是一种复杂的多因素疾病,遗传易感性和环境因素的结合在其发展中起主要作用。然而,潜在的调节机制仍不清楚。多酚在管理 HTN 方面显示出有利和有益的作用。非编码 RNA(ncRNAs)作为调节多酚生物特性的有影响力的介质,在 CVDs 中留下了显著的足迹。ncRNAs 控制着与心血管系统相关的几乎所有细胞类型的基本功能,因此,与血压 (BP) 调节有直接联系的可能性非常大。最近的证据表明,包括主要的小 ncRNAs、microRNAs (miRNAs) 和 long ncRNAs (lncRNAs) 在内的许多 ncRNAs 在多酚的降压作用中发挥着关键作用。事实上,多酚对 lncRNAs 的靶向作用将是 HTN 管理的一种新颖而有前途的策略。本文综述了多酚在 HTN 中的作用。此外,我们强调了多酚对主要 ncRNAs 调节的潜在作用,这表明多酚在调节 ncRNAs 以发挥保护作用方面的作用,并提出它们作为 HTN 治疗的新靶点。CVD:心血管疾病;BP:血压;HTN:高血压;lncRNAs:长非编码 RNA;p38-MAPK:p38-有丝分裂原激活的蛋白激酶;OPCs:低聚原花青素;GTP:鸟苷三磷酸;ROS:活性氧;cGMP:环鸟苷酸;SGC:可溶性鸟苷酸环化酶;PI3K:磷脂酰肌醇 3-激酶;cGMP:环鸟苷酸;eNOS:内皮型一氧化氮合酶;ERK ½:细胞外信号调节激酶 ½;L-Arg:L-精氨酸;MAPK:丝裂原激活的蛋白激酶;NO:一氧化氮;P:磷;PDK1:磷酸肌醇依赖性激酶 1;PI3-K:磷脂酰肌醇 3-激酶;PIP2:磷酸二酯酰肌醇;ncRNAs:非蛋白编码 RNA;miRNAs:microRNAs;OPCs:低聚原花青素;RES:白藜芦醇;GE:葡萄提取物;T2DM:2 型糖尿病;IL:白细胞介素;TNF-α:肿瘤坏死因子-α;NF-κB:核因子 NF-kappa-B;ALP:碱性磷酸酶;PARP1:多聚 [ADP-核糖] 聚合酶 1;HIF1a:缺氧诱导因子 1A;NFATc2:活化 T 细胞的核因子 2;PAD:外周动脉疾病;SHR:自发性高血压大鼠;RAAS:肾素-血管紧张素-醛固酮系统;ATR:血管紧张素 1 型受体;Nox:NADPH 氧化酶;HO-1:血红素加氧酶 1;JAK/STAT:Janus 激酶/信号转导物/转录激活物;PNS:三七总皂苷;snoRNA:小核仁 RNA;hnRNA:不均一核 RNA;VSMCs:血管平滑肌细胞;irf7:干扰素调节因子 7;limo2:LIM 仅域 2;GWAS:全基因组关联研究;GAS5:生长抑制特异性 5;Asb3、锚蛋白重复和 SPCS 盒包含 3;Chac2:阳离子转运调节剂同源物 2;Pex11b:过氧化物酶体膜 11B;Sp5:Sp5 转录因子;EGCG:表没食子儿茶素没食子酸酯;ApoE:载脂蛋白 E;ERK-MAP kinase:细胞外信号调节激酶-有丝分裂原激活的蛋白激酶;PAH:肺动脉高压;PAP:肺动脉压;HIF1a:缺氧诱导因子 1A;NFATc2:活化 T 细胞的核因子 2;HMEC-1:人微血管内皮细胞;stat2:信号转导物和转录激活物 2;JNK:c-Jun N-末端激酶;iNOS:诱导型一氧化氮合酶。SNP:单核苷酸多态性;CAD:冠状动脉疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/441e/9037439/272d16168bcd/KRNB_A_2066335_F0001_OC.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验