Sonnino Giorgio
Department of Physics, Université Libre de Bruxelles (U.L.B.), Campus de la Plaine C.P. 224, Bvd du Triomphe, 1050 Brussels, Belgium.
Entropy (Basel). 2024 Nov 23;26(12):1011. doi: 10.3390/e26121011.
In previous work, we investigated thermodynamic processes in systems at the mesoscopic level where traditional thermodynamic descriptions (macroscopic or microscopic) may not be fully adequate. The key result is that entropy in such systems does not change continuously, as in macroscopic systems, but rather in discrete steps characterized by the quantization constant β. This quantization reflects the underlying discrete nature of the collision process in low-dimensional systems and the essential role played by thermodynamic fluctuations at this scale. Thermodynamic variables conjugate to the forces, along with Glansdorff-Prigogine's dissipative variable can be discretized, enabling a mesoscopic-scale formulation of canonical commutation rules (CCRs). In this framework, measurements correspond to determining the eigenvalues of operators associated with key thermodynamic quantities. This work investigates the quantization parameter β in the CCRs using a nano-gas model analyzed through classical statistical physics. Our findings suggest that β is not an unknown fundamental constant. Instead, it emerges as the minimum achievable value derived from optimizing the uncertainty relation within the framework of our model. The expression for β is determined in terms of the ratio χ, which provides a dimensionless number that reflects the relative scales of volume and mass between entities at the Bohr (atomic level) and the molecular scales. This latter parameter quantifies the relative influence of quantum effects versus classical dynamics in a given scattering process.
在之前的工作中,我们研究了介观层面系统中的热力学过程,在该层面传统的热力学描述(宏观或微观)可能并不完全适用。关键结果是,此类系统中的熵不像宏观系统那样连续变化,而是以量子化常数β为特征呈离散步长变化。这种量子化反映了低维系统中碰撞过程的潜在离散性质以及该尺度下热力学涨落所起的关键作用。与力共轭的热力学变量,连同格兰斯多夫 - 普里戈金的耗散变量都可以离散化,从而实现介观尺度下正则对易关系(CCRs)的公式化。在此框架下,测量对应于确定与关键热力学量相关的算符的本征值。这项工作使用通过经典统计物理学分析的纳米气体模型来研究CCRs中的量子化参数β。我们的研究结果表明,β并非一个未知的基本常数。相反,它是在我们模型框架内通过优化不确定性关系得出的最小可实现值。β的表达式是根据比率χ确定的,χ提供了一个无量纲数,反映了玻尔(原子层面)和分子尺度下实体之间体积和质量的相对尺度。后一个参数量化了给定散射过程中量子效应与经典动力学的相对影响。