Suppr超能文献

食品中霉菌毒素检测的分子印迹技术研究进展

Recent Progress of Molecularly Imprinted Technique for the Detection of Mycotoxins in Food.

作者信息

Wang Yuan, Wei Dizhe, Wang Yu, Wang Meng, Zhai Wenlei

机构信息

Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.

School of Food Science and Engineering, Shanxi Agricultural University, Taiyuan 030801, China.

出版信息

Foods. 2024 Dec 20;13(24):4125. doi: 10.3390/foods13244125.

Abstract

Mycotoxins are a group of toxic metabolites produced by fungi that infect agricultural products. Consuming mycotoxin-contaminated foods and feeds can cause various adverse health effects in humans and animals. Therefore, developing rapid and sensitive analytical methods for detecting mycotoxins is an urgent task. The molecularly imprinted technique is an advanced analytical tool for the specific recognition and selective enrichment of target molecules. For the development of rapid detection methods for mycotoxins, synthesized molecularly imprinted polymers (MIPs) can serve as specific recognition elements. By integrating MIPs with various sensing platforms, such as solid-phase extraction, electrochemical sensors, fluorescence sensors, surface-enhanced Raman spectroscopy, and surface plasmonic resonance sensors, remarkable progress has been made in the detection of mycotoxins in foods. This review focuses on the advances in the application of MIPs for the rapid detection of various mycotoxins over the past five years. The development of new MIP synthesis methods is categorized and summarized. Moreover, the future potential of MIP-based methods for mycotoxin detection is also discussed and highlighted.

摘要

霉菌毒素是由感染农产品的真菌产生的一组有毒代谢产物。食用受霉菌毒素污染的食品和饲料会对人类和动物造成各种不良健康影响。因此,开发快速灵敏的霉菌毒素检测分析方法是一项紧迫任务。分子印迹技术是一种用于特异性识别和选择性富集目标分子的先进分析工具。对于霉菌毒素快速检测方法的开发,合成的分子印迹聚合物(MIPs)可作为特异性识别元件。通过将MIPs与各种传感平台(如固相萃取、电化学传感器、荧光传感器、表面增强拉曼光谱和表面等离子体共振传感器)相结合,在食品中霉菌毒素的检测方面取得了显著进展。本文综述聚焦于过去五年中MIPs在各种霉菌毒素快速检测应用方面的进展。对新型MIP合成方法的发展进行了分类和总结。此外,还讨论并强调了基于MIP的霉菌毒素检测方法的未来潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b243/11675330/d9360ea7141f/foods-13-04125-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验