Suppr超能文献

基于呼吸组学分析的机器学习模型鉴别缺血性心脏病

Machine Learning Model Discriminate Ischemic Heart Disease Using Breathome Analysis.

作者信息

Marzoog Basheer Abdullah, Chomakhidze Peter, Gognieva Daria, Gagarina Nina Vladimirovna, Silantyev Artemiy, Suvorov Alexander, Fominykha Ekaterina, Mustafina Malika, Natalya Ershova, Gadzhiakhmedova Aida, Kopylov Philipp

机构信息

World-Class Research Center «Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Street, 119991 Moscow, Russia.

University Clinical Hospital Number 1, Radiology Department, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Street, 119991 Moscow, Russia.

出版信息

Biomedicines. 2024 Dec 11;12(12):2814. doi: 10.3390/biomedicines12122814.

Abstract

Ischemic heart disease (IHD) impacts the quality of life and is the most frequently reported cause of morbidity and mortality globally. To assess the changes in the exhaled volatile organic compounds (VOCs) in patients with vs. without ischemic heart disease (IHD) confirmed by stress computed tomography myocardial perfusion (CTP) imaging. IHD early diagnosis and management remain underestimated due to the poor diagnostic and therapeutic strategies including the primary prevention methods. A single center observational study included 80 participants. The participants were aged ≥ 40 years and given an informed written consent to participate in the study and publish any associated figures. Both groups, G1 ( = 31) with and G2 ( = 49) without post stress-induced myocardial perfusion defect, passed cardiologist consultation, anthropometric measurements, blood pressure and pulse rate measurements, echocardiography, real time breathing at rest into PTR-TOF-MS-1000, cardio-ankle vascular index, bicycle ergometry, and immediately after performing bicycle ergometry repeating the breathing analysis into the PTR-TOF-MS-1000, and after three minutes from the end of the second breath, repeat the breath into the PTR-TOF-MS-1000, then performing CTP. LASSO regression with nested cross-validation was used to find the association between the exhaled VOCs and existence of myocardial perfusion defect. Statistical processing performed with R programming language v4.2 and Python v.3.10 [^R], STATISTICA program v.12, and IBM SPSS v.28. The VOCs specificity 77.6% [95% confidence interval (CI); 0.666; 0.889], sensitivity 83.9% [95% CI; 0.692; 0.964], and diagnostic accuracy; area under the curve (AUC) 83.8% [95% CI; 0.73655857; 0.91493173]. Whereas the AUC of the bicycle ergometry 50.7% [95% CI; 0.388; 0.625], specificity 53.1% [95% CI; 0.392; 0.673], and sensitivity 48.4% [95% CI; 0.306; 0.657]. The VOCs analysis appear to discriminate individuals with vs. without IHD using machine learning models. : The exhaled breath analysis reflects the myocardiocytes metabolomic signature and related intercellular homeostasis changes and regulation perturbances. Exhaled breath analysis poses a promise result to improve the diagnostic accuracy of the physical stress tests using machine learning models.

摘要

缺血性心脏病(IHD)影响生活质量,是全球发病率和死亡率最常报告的原因。通过负荷计算机断层扫描心肌灌注(CTP)成像评估有和无缺血性心脏病(IHD)患者呼出挥发性有机化合物(VOCs)的变化。由于包括一级预防方法在内的诊断和治疗策略不佳,IHD的早期诊断和管理仍然被低估。一项单中心观察性研究纳入了80名参与者。参与者年龄≥40岁,并给予知情书面同意参与研究并发表任何相关数据。两组,G1组(n = 31)有应激诱导的心肌灌注缺损,G2组(n = 49)无应激诱导的心肌灌注缺损,均经过心脏病专家会诊、人体测量、血压和脉搏率测量、超声心动图检查、静息时实时呼吸进入PTR-TOF-MS-1000、心踝血管指数、自行车测力计检查,在进行自行车测力计检查后立即重复呼吸分析进入PTR-TOF-MS-1000,在第二次呼吸结束三分钟后,再次将呼吸样本进入PTR-TOF-MS-1000,然后进行CTP检查。使用带嵌套交叉验证的LASSO回归来发现呼出VOCs与心肌灌注缺损存在之间的关联。使用R编程语言v4.2和Python v.3.10 [^R]、STATISTICA程序v.12和IBM SPSS v.28进行统计处理。VOCs的特异性为77.6% [95%置信区间(CI);0.666;0.889],敏感性为83.9% [95% CI;0.692;0.964],诊断准确性;曲线下面积(AUC)为83.8% [95% CI;0.73655857;0.91493173]。而自行车测力计检查的AUC为50.7% [95% CI;0.388;0.625],特异性为53.1% [95% CI;0.392;0.673],敏感性为48.4% [95% CI;0.306;0.657]。VOCs分析似乎可以使用机器学习模型区分有和无IHD的个体。:呼出气体分析反映了心肌细胞代谢组学特征以及相关的细胞间稳态变化和调节紊乱。呼出气体分析有望通过机器学习模型提高身体应激测试的诊断准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5eb7/11673773/ab4fd212010b/biomedicines-12-02814-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验