Suppr超能文献

丝微纤维与聚己内酯微纤维在组织工程和再生医学应用中软骨细胞行为的比较

Comparison of Chondrocyte Behaviors Between Silk Microfibers and Polycaprolactone Microfibers in Tissue Engineering and Regenerative Medicine Applications.

作者信息

Jin Guang-Zhen

机构信息

Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 31116, Republic of Korea.

出版信息

Bioengineering (Basel). 2024 Nov 29;11(12):1209. doi: 10.3390/bioengineering11121209.

Abstract

Silk and polycaprolactone (PCL), derived from natural and synthetic sources, respectively, are suture materials commonly used in surgery. Beyond their application in sutures, they are also compelling subjects in regenerative medicine and tissue engineering. This study evaluated the effects of degummed silk microfibers compared to electrospun PCL microfibers of a similar diameter on chondrocyte behavior. The two types of microfibers were analyzed using scanning electron microscopy (SEM), real-time PCR, Western blotting, and DMMB analysis. The results demonstrated that the silk microfibers exhibited a higher proliferative cell rate over time compared to the PCL microfibers. Additionally, the expression of chondrogenic phenotypes was significantly upregulated, while the marker for hypertrophic chondrocytes-type X collagen-was downregulated in cell-laden silk microfibers compared to cell-laden PCL microfibers. These findings suggest that natural degummed silk microfibers may be a viable option for repairing damaged cartilage in the future of orthopedic surgery and bioengineering.

摘要

丝绸和聚己内酯(PCL)分别来源于天然和合成材料,是外科手术中常用的缝合材料。除了用于缝合,它们在再生医学和组织工程领域也是引人关注的研究对象。本研究评估了脱胶丝微纤维与直径相似的电纺PCL微纤维相比,对软骨细胞行为的影响。使用扫描电子显微镜(SEM)、实时聚合酶链反应(PCR)、蛋白质免疫印迹法和二甲基甲酰胺蓝(DMMB)分析对这两种微纤维进行了检测。结果表明,随着时间的推移,丝微纤维比PCL微纤维表现出更高的细胞增殖率。此外,与负载细胞的PCL微纤维相比,负载细胞的丝微纤维中软骨生成表型的表达显著上调,而肥大软骨细胞标记物——X型胶原蛋白则下调。这些发现表明,天然脱胶丝微纤维在未来的骨科手术和生物工程中可能是修复受损软骨的一个可行选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f54e/11673212/3d849d35101a/bioengineering-11-01209-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验