Suppr超能文献

Fluid uptake in the renal papilla by vasa recta estimated by two methods simultaneously.

作者信息

Zimmerhackl B, Robertson C R, Jamison R L

出版信息

Am J Physiol. 1985 Mar;248(3 Pt 2):F347-53. doi: 10.1152/ajprenal.1985.248.3.F347.

Abstract

Fluid uptake by vasa recta was determined by two independent methods, videomicroscopy and the micropuncture technique, in the exposed papilla of nine antidiuretic rats to reconcile differences in values previously obtained by the two techniques. Erythrocyte velocity (Vrbc) and diameter (D) in descending vasa recta (DVR) (n = 22) and ascending vasa recta (AVR) (n = 31) near the "base" of the papilla were measured. Using a conversion function determined in vitro, Vrbc was transformed into mean blood velocity (Vblood). From D and Vblood, mean blood flow (Q) in DVR and AVR was calculated. In DVR, mean Vrbc, D, and Q were 1.06 +/- 0.01 mm/s, 16.3 +/- 0.4 micron, and 10.6 +/- 1.4 nl/min, respectively. In AVR, each corresponding value differed significantly, 0.47 +/- 0.06 mm/s (P less than 0.001), 19.8 +/- 0.8 micron (P less than 0.001), and 5.65 +/- 1.3 nl/min (P less than 0.025), respectively. Blood samples from DVR and AVR were obtained by micropuncture from the same location. Plasma protein concentration (g/dl) was 5.1 +/- 0.6 in DVR, 4.0 +/- 0.4 (P less than 0.05) in AVR, and 3.6 +/- 0.3 (P less than 0.025) in the renal vein. Assuming no net transcapillary loss of protein, total plasma outflow exceeded inflow by 29%, the excess representing fluid uptake; and to reconcile the blood flow and plasma protein concentrations found, functioning AVR should outnumber functioning DVR by a ratio of 2.1-2.4 to 1, depending on local hematocrit. Given the total number of AVR + DVR = 2,944 (at the base), capillary fluid uptake was calculated to range between 1.5 and 2.6 microliter/min.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验