Suppr超能文献

DeepRF:一种基于注释基因组预测生物体代谢途径的深度学习方法。

DeepRF: A deep learning method for predicting metabolic pathways in organisms based on annotated genomes.

机构信息

Institute of Artificial Intelligence, School of Computer Science, Wuhan University, China.

出版信息

Comput Biol Med. 2022 Aug;147:105756. doi: 10.1016/j.compbiomed.2022.105756. Epub 2022 Jun 20.

Abstract

The rapid increase of metabolomics has led to an increasing focus on metabolic pathway modeling and reconstruction. In particular, reconstructing an organism's metabolic network based on its genome sequence is a key challenge in systems biology. The method used to address this problem predicts the presence or absence of metabolic pathways from known pathways in a reference database. However, this method is based on manual metabolic pathway construction and cannot be used for large genome sequencing data. To address such problems, we apply a supervised machine learning approach consisting of deep neural networks to learn feature representations of metabolic pathways and feed these representations into random forests to predict metabolic pathways. The supervised learning model, DeepRF, predicts all known and unknown metabolic pathways in an organism. Evaluation of DeepRF on over 318,016 instances shows that the model can predict metabolic pathways with high-performance metrics accuracy (>97%), recall (>95%), and precision (>99%). Comparing DeepRF with other methods in the literature shows that DeepRF produces more reliable results than other methods.

摘要

代谢组学的快速发展使得人们越来越关注代谢途径的建模和重构。特别是,根据基因组序列重建生物体的代谢网络是系统生物学中的一个关键挑战。用于解决该问题的方法从参考数据库中的已知途径预测代谢途径的存在或不存在。然而,该方法基于手动代谢途径构建,不能用于大型基因组测序数据。为了解决这些问题,我们应用了一种由深度神经网络组成的有监督机器学习方法,以学习代谢途径的特征表示,并将这些表示输入随机森林以预测代谢途径。有监督学习模型 DeepRF 预测生物体中所有已知和未知的代谢途径。在超过 318,016 个实例上对 DeepRF 的评估表明,该模型可以使用高性能指标(准确性>97%,召回率>95%,精度>99%)预测代谢途径。与文献中的其他方法进行比较表明,DeepRF 产生的结果比其他方法更可靠。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验