Roueini Maliheh Azimi, Kabalan Amal
Department of Electrical and Computer Engineering, Bucknell University, Lewisburg, PA 17837, USA.
Sensors (Basel). 2024 Dec 17;24(24):8049. doi: 10.3390/s24248049.
Micropillar array electrodes offer several advantages, such as enhanced mass transport, lower detection limits, and the potential for miniaturization, making them instrumental in the design and fabrication of electrochemical biosensors. The performance of these biosensors is influenced by electrode geometry, including parameters like shape and height, which affect surface area and overall sensitivity. In this study, we designed a microfluidic electrochemical biosensor featuring micropillar array electrodes, modeled in COMSOL Multiphysics. We compared the response currents of I-shaped and cylindrical micropillar array electrodes. The working electrode (WE), consisting of 100 micropillars with a height of 300 µm, exhibited a sensitivity of 1.61 µA·cm·mM in cyclic voltammetry, highlighting its effectiveness for analyte detection.
微柱阵列电极具有多种优势,例如增强传质、降低检测限以及具备小型化潜力,这使得它们在电化学生物传感器的设计与制造中发挥着重要作用。这些生物传感器的性能受电极几何形状影响,包括形状和高度等参数,这些参数会影响表面积和整体灵敏度。在本研究中,我们设计了一种以微柱阵列电极为特色的微流控电化学生物传感器,并在COMSOL Multiphysics中进行了建模。我们比较了I形和圆柱形微柱阵列电极的响应电流。由100个高度为300 µm的微柱组成的工作电极(WE)在循环伏安法中表现出1.61 µA·cm·mM的灵敏度,突出了其在分析物检测方面的有效性。