Suppr超能文献

用于改善乳腺癌肿瘤轮廓描绘的优化合成相关扩散成像

Optimized Synthetic Correlated Diffusion Imaging for Improving Breast Cancer Tumor Delineation.

作者信息

Tai Chi-En Amy, Wong Alexander

机构信息

Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.

出版信息

Sensors (Basel). 2024 Dec 21;24(24):8173. doi: 10.3390/s24248173.

Abstract

Breast cancer is a significant cause of death from cancer in women globally, highlighting the need for improved diagnostic imaging to enhance patient outcomes. Accurate tumor identification is essential for diagnosis, treatment, and monitoring, emphasizing the importance of advanced imaging technologies that provide detailed views of tumor characteristics and disease. Recently, a new imaging modality named synthetic correlated diffusion imaging (CDI) has been showing promise for enhanced prostate cancer delineation when compared to existing MRI imaging modalities. In this study, we explore the efficacy of optimizing the correlated diffusion imaging (CDI) protocol to tailor it for breast cancer tumor delineation. More specifically, we optimize the coefficients of the calibrated signal mixing function in the CDI protocol that controls the contribution of different gradient pulse strengths and timings by maximizing the area under the receiver operating characteristic curve (AUC) across a breast cancer patient cohort. Experiments showed that the optimized CDI can noticeably increase the delineation of breast cancer tumors by over 0.03 compared to the unoptimized form, as well as providing the highest AUC when compared with gold-standard modalities. These experimental results demonstrate the importance of optimizing the CDI imaging protocol for specific cancer applications to yield the best diagnostic imaging performance.

摘要

乳腺癌是全球女性癌症死亡的一个重要原因,这凸显了改进诊断成像以提高患者治疗效果的必要性。准确的肿瘤识别对于诊断、治疗和监测至关重要,这强调了先进成像技术的重要性,这些技术能够提供肿瘤特征和疾病的详细视图。最近,一种名为合成相关扩散成像(CDI)的新成像模式与现有的MRI成像模式相比,在增强前列腺癌轮廓描绘方面显示出了前景。在本研究中,我们探索优化相关扩散成像(CDI)协议以使其适用于乳腺癌肿瘤轮廓描绘的效果。更具体地说,我们通过在一组乳腺癌患者中最大化受试者工作特征曲线(AUC)下的面积,来优化CDI协议中校准信号混合函数的系数,该函数控制不同梯度脉冲强度和时间的贡献。实验表明,与未优化的形式相比,优化后的CDI可以使乳腺癌肿瘤的轮廓描绘显著增加超过0.03,并且与金标准模式相比时具有最高的AUC。这些实验结果证明了针对特定癌症应用优化CDI成像协议以获得最佳诊断成像性能的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9526/11679806/f846145fb86d/sensors-24-08173-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验