Yue Yang, Cheng Yihua, Marquet Céline, Xiao Chenguang, Guo Jingjing, Li Shu, He Shan
School of Computer Science, The University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
Department of Informatics, Bioinformatics and Computational Biology - i12, TUM-Technical University of Munich, Boltzmannstr. 3, Garching 85748, Munich, Germany.
J Chem Inf Model. 2025 Jan 27;65(2):580-588. doi: 10.1021/acs.jcim.4c01607. Epub 2025 Jan 7.
Predicting protein-protein interaction (PPI) binding affinities in unseen protein complex clusters is essential for elucidating complex protein interactions and for the targeted screening of peptide- or protein-based drugs. We introduce MCGLPPI++, a meta-learning framework designed to improve the adaptability of pretrained geometric models in such scenarios. To effectively boost the meta-learning optimization by injecting prior intersample distribution knowledge, three specially designed training sample cluster splitting patterns based on protein interaction interfaces are introduced. Additionally, MCGLPPI++ is equipped with an independent energy component which explicitly models interface nonbonded interaction energies closely related to the strengths of PPIs. To validate our approach, we curate a new data set featuring a challenging test cluster of T-cell receptors binding to antigenic peptide-MHC molecules (TCR-pMHC). Experimental results show that geometric models enhanced by the MCGLPPI++ framework achieve significantly more robust binding affinity predictions after fine-tuning on a few samples from this novel cluster compared to their vanilla counterparts, which demonstrates the effectiveness of the framework.
预测未见过的蛋白质复合物簇中的蛋白质-蛋白质相互作用(PPI)结合亲和力,对于阐明复杂的蛋白质相互作用以及基于肽或蛋白质的药物的靶向筛选至关重要。我们引入了MCGLPPI++,这是一个元学习框架,旨在提高预训练几何模型在这种情况下的适应性。为了通过注入先验样本间分布知识有效地促进元学习优化,引入了三种基于蛋白质相互作用界面专门设计的训练样本簇分裂模式。此外,MCGLPPI++配备了一个独立的能量组件,该组件明确地对与PPI强度密切相关的界面非键相互作用能量进行建模。为了验证我们的方法,我们精心策划了一个新的数据集,该数据集具有一个具有挑战性的测试簇,即T细胞受体与抗原肽-MHC分子(TCR-pMHC)结合。实验结果表明,与普通模型相比,通过MCGLPPI++框架增强的几何模型在对来自这个新簇的少数样本进行微调后,实现了显著更稳健的结合亲和力预测,这证明了该框架的有效性。