Suppr超能文献

元学习实现了针对蛋白质-蛋白质相互作用的复杂的特定簇少样本结合亲和力预测。

Meta-Learning Enables Complex Cluster-Specific Few-Shot Binding Affinity Prediction for Protein-Protein Interactions.

作者信息

Yue Yang, Cheng Yihua, Marquet Céline, Xiao Chenguang, Guo Jingjing, Li Shu, He Shan

机构信息

School of Computer Science, The University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.

Department of Informatics, Bioinformatics and Computational Biology - i12, TUM-Technical University of Munich, Boltzmannstr. 3, Garching 85748, Munich, Germany.

出版信息

J Chem Inf Model. 2025 Jan 27;65(2):580-588. doi: 10.1021/acs.jcim.4c01607. Epub 2025 Jan 7.

Abstract

Predicting protein-protein interaction (PPI) binding affinities in unseen protein complex clusters is essential for elucidating complex protein interactions and for the targeted screening of peptide- or protein-based drugs. We introduce MCGLPPI++, a meta-learning framework designed to improve the adaptability of pretrained geometric models in such scenarios. To effectively boost the meta-learning optimization by injecting prior intersample distribution knowledge, three specially designed training sample cluster splitting patterns based on protein interaction interfaces are introduced. Additionally, MCGLPPI++ is equipped with an independent energy component which explicitly models interface nonbonded interaction energies closely related to the strengths of PPIs. To validate our approach, we curate a new data set featuring a challenging test cluster of T-cell receptors binding to antigenic peptide-MHC molecules (TCR-pMHC). Experimental results show that geometric models enhanced by the MCGLPPI++ framework achieve significantly more robust binding affinity predictions after fine-tuning on a few samples from this novel cluster compared to their vanilla counterparts, which demonstrates the effectiveness of the framework.

摘要

预测未见过的蛋白质复合物簇中的蛋白质-蛋白质相互作用(PPI)结合亲和力,对于阐明复杂的蛋白质相互作用以及基于肽或蛋白质的药物的靶向筛选至关重要。我们引入了MCGLPPI++,这是一个元学习框架,旨在提高预训练几何模型在这种情况下的适应性。为了通过注入先验样本间分布知识有效地促进元学习优化,引入了三种基于蛋白质相互作用界面专门设计的训练样本簇分裂模式。此外,MCGLPPI++配备了一个独立的能量组件,该组件明确地对与PPI强度密切相关的界面非键相互作用能量进行建模。为了验证我们的方法,我们精心策划了一个新的数据集,该数据集具有一个具有挑战性的测试簇,即T细胞受体与抗原肽-MHC分子(TCR-pMHC)结合。实验结果表明,与普通模型相比,通过MCGLPPI++框架增强的几何模型在对来自这个新簇的少数样本进行微调后,实现了显著更稳健的结合亲和力预测,这证明了该框架的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验