School of Computer Science, The University of Birmingham, Edgbaston, Birmingham, UK.
Macao Polytechnic University, Macao, China.
Nat Commun. 2024 Nov 7;15(1):9629. doi: 10.1038/s41467-024-53583-w.
Structure-based machine learning algorithms have been utilized to predict the properties of protein-protein interaction (PPI) complexes, such as binding affinity, which is critical for understanding biological mechanisms and disease treatments. While most existing algorithms represent PPI complex graph structures at the atom-scale or residue-scale, these representations can be computationally expensive or may not sufficiently integrate finer chemical-plausible interaction details for improving predictions. Here, we introduce MCGLPPI, a geometric representation learning framework that combines graph neural networks (GNNs) with MARTINI molecular coarse-grained (CG) models to predict PPI overall properties accurately and efficiently. Extensive experiments on three types of downstream PPI property prediction tasks demonstrate that at the CG-scale, MCGLPPI achieves competitive performance compared with the counterparts at the atom- and residue-scale, but with only a third of computational resource consumption. Furthermore, CG-scale pre-training on protein domain-domain interaction structures enhances its predictive capabilities for PPI tasks. MCGLPPI offers an effective and efficient solution for PPI overall property predictions, serving as a promising tool for the large-scale analysis of biomolecular interactions.
基于结构的机器学习算法已被用于预测蛋白质-蛋白质相互作用(PPI)复合物的性质,如结合亲和力,这对于理解生物机制和疾病治疗至关重要。虽然大多数现有的算法在原子或残基尺度上表示 PPI 复合物的图结构,但这些表示可能计算成本高,或者可能不足以整合更精细的化学上合理的相互作用细节,以提高预测能力。在这里,我们引入了 MCGLPPI,这是一个结合图神经网络(GNN)和 MARTINI 分子粗粒化(CG)模型的几何表示学习框架,用于准确高效地预测 PPI 的整体性质。在三种类型的下游 PPI 性质预测任务上的广泛实验表明,在 CG 尺度上,MCGLPPI 与原子和残基尺度的对应方法相比具有竞争力,但计算资源消耗仅为其三分之一。此外,在蛋白质域-域相互作用结构上进行 CG 尺度预训练可以增强其对 PPI 任务的预测能力。MCGLPPI 为 PPI 整体性质预测提供了一种有效且高效的解决方案,是大规模分析生物分子相互作用的有前途的工具。