Guerrero Navarro Carlos H, Balbuena Perla B
Department of Chemical Engineering, Department of Chemistry, Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States.
J Phys Chem C Nanomater Interfaces. 2025 Aug 7;129(33):14687-14700. doi: 10.1021/acs.jpcc.5c04292. eCollection 2025 Aug 21.
In this work, we report the results of a theoretical-computational analysis of the solid electrolyte interphase (SEI) growth and degradation dynamics occurring in lithium metal batteries during cycling. We use ab initio-kinetic Monte Carlo simulations to generate a synthetic data set, which is analyzed by machine learning methods. We aim to determine: (i) how modifications in interfacial interaction energies between solid electrolyte interphase (SEI) blocks and between Li ions and SEI facets impact the Coulombic efficiency (CE) of the battery and (ii) what factors, including reactions, microscopic transport, and other interfacial events, may lead to cell performance "failure" during prolonged charge and discharge cycles, signaled as a sharp decay in the CE over cycling. The demonstration of our approach is done on a cell including a Li metal surface interfacing with a previously introduced state-of-the-art electrolyte, and the idea can be applied to any electrochemical system. Outcomes include the identification of the leading chemical, physical, and structural variables causing cell failure and relating them to the electrolyte formulation, thus paving the way to future more refined analysis and electrolyte design.
在这项工作中,我们报告了对锂金属电池循环过程中发生的固体电解质界面(SEI)生长和降解动力学进行理论计算分析的结果。我们使用从头算动力学蒙特卡罗模拟生成一个合成数据集,并通过机器学习方法对其进行分析。我们旨在确定:(i)固体电解质界面(SEI)块之间以及锂离子与SEI晶面之间的界面相互作用能的变化如何影响电池的库仑效率(CE);(ii)包括反应、微观传输和其他界面事件在内的哪些因素可能导致在长时间充放电循环期间电池性能“失效”,其表现为循环过程中CE急剧下降。我们在一个包含锂金属表面与先前引入的先进电解质相接触的电池上展示了我们的方法,并且该想法可应用于任何电化学系统。研究结果包括识别导致电池失效的主要化学、物理和结构变量,并将它们与电解质配方相关联,从而为未来更精细的分析和电解质设计铺平道路。