Vega-Letter Ana Maria, García-Guerrero Cynthia, Yantén-Fuentes Liliana, Pradenas Carolina, Herrera-Luna Yeimi, Lara-Barba Eliana, Bustamante-Barrientos Felipe A, Rojas Masyelly, Araya María Jesús, Jeraldo Nicole, Aros Constanza, Troncoso Francisca, Poblete Daniela, Court Angela, Ortloff Alexander, Barraza Jose, Velarde Francesca, Farkas Carlos, Carril Claudio, Luque-Campos Noymar, Almarza Gonzalo, Barahona Maximiliano, Matas Jose, Cereceda Lucas, Lorca Rocío, Toledo Jorge, Oyarce Karina, Vernal Rolando, Caicedo Andrés, Del Campo Andrea, Hidalgo Yessia, Elizondo-Vega Roberto, Djouad Farida, Khoury Maroun, Figueroa Fernando E, Luz-Crawford Patricia
Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
Center of Interventional Medicine for Precision and Advanced Cellular Therapy, IMPACT, Santiago, Chile.
J Transl Med. 2025 Jan 7;23(1):26. doi: 10.1186/s12967-024-05945-7.
The inflammatory responses from synovial fibroblasts and macrophages and the mitochondrial dysfunction in chondrocytes lead to oxidative stress, disrupt extracellular matrix (ECM) homeostasis, and accelerate the deterioration process of articular cartilage in osteoarthritis (OA). In recent years, it has been proposed that mesenchymal stromal cells (MSC) transfer their functional mitochondria to damaged cells in response to cellular stress, becoming one of the mechanisms underpinning their therapeutic effects. Therefore, we hypothesize that a novel cell-free treatment for OA could involve direct mitochondria transplantation, restoring both cellular and mitochondrial homeostasis.
Mitochondria were isolated from Umbilical Cord (UC)-MSC (Mito-MSC) and characterized based on their morphology, phenotype, functions, and their ability to be internalized by different articular cells. Furthermore, the transcriptional changes following mitochondrial uptake by chondrocytes were evaluated using an Affymetrix analysis, Lastly, the dose dependence therapeutic efficacy, biodistribution and immunogenicity of Mito-MSC were assessed in vivo, through an intra-articular injection in male C57BL6 mice in a collagenase-induced OA (CIOA) model.
Our findings demonstrate the functional integrity of Mito-MSC and their ability to be efficiently transferred into chondrocytes, synovial macrophages, and synovial fibroblasts. Moreover, the transcriptomic analysis showed the upregulation of genes involved in stress such as DNA reparative machinery and inflammatory antiviral responses. Finally, Mito-MSC transplantation yielded significant reductions in joint mineralization, a hallmark of OA progression, as well as improvements in OA-related histological signs, with the lower dose exhibiting better therapeutic efficacy. Furthermore, Mito-MSC was detected within the knee joint for up to 24 h post-injection without eliciting an inflammatory response in CIOA mice.
Collectively, our results reveal that mitochondria derived from MSC are transferred to key articular cells and are retained in the joint without generating an inflammatory immune response mitigating articular cartilage degradation in OA, probably through a restorative effect triggered by the stress antiviral response within OA chondrocytes.
滑膜成纤维细胞和巨噬细胞的炎症反应以及软骨细胞中的线粒体功能障碍会导致氧化应激,破坏细胞外基质(ECM)稳态,并加速骨关节炎(OA)中关节软骨的退变过程。近年来,有人提出间充质基质细胞(MSC)会在细胞应激时将其功能性线粒体转移至受损细胞,这成为其治疗作用的潜在机制之一。因此,我们推测一种新型的OA无细胞治疗方法可能涉及直接的线粒体移植,以恢复细胞和线粒体的稳态。
从脐带(UC)-MSC中分离出线粒体(Mito-MSC),并根据其形态、表型、功能以及被不同关节细胞内化的能力进行表征。此外,使用Affymetrix分析评估软骨细胞摄取线粒体后的转录变化。最后,通过在胶原酶诱导的OA(CIOA)模型的雄性C57BL6小鼠中进行关节内注射,在体内评估Mito-MSC的剂量依赖性治疗效果、生物分布和免疫原性。
我们的研究结果证明了Mito-MSC的功能完整性及其有效转移至软骨细胞、滑膜巨噬细胞和滑膜成纤维细胞的能力。此外,转录组分析显示参与应激的基因上调,如DNA修复机制和炎症抗病毒反应。最后,Mito-MSC移植使关节矿化(OA进展的一个标志)显著减少,同时OA相关组织学体征得到改善,较低剂量表现出更好的治疗效果。此外,在CIOA小鼠中,注射后长达24小时在膝关节内均可检测到Mito-MSC,且未引发炎症反应。
总体而言,我们的结果表明,源自MSC的线粒体转移至关键关节细胞并保留在关节内,不会产生炎症免疫反应,可能通过OA软骨细胞内应激抗病毒反应触发的修复作用减轻OA中的关节软骨降解。