Charman Sarah Jane, Okwose Nduka C, Groenewegen Amy, Del Franco Annamaria, Tafelmeier Maria, Preveden Andrej, Garcia Sebastian Cristina, Fuller Amy S, Sinclair David, Edwards Duncan, Nelissen Anne Pauline, Malitas Petros, Zisaki Aikaterini, Darba Josep, Bosnic Zoran, Vracar Petar, Barlocco Fausto, Fotiadis Dimitris, Banerjee Prithwish, MacGowan Guy A, Fernandez Oscar, Zamorano José, Jiménez-Blanco Bravo Marta, Maier Lars S, Olivotto Iacopo, Rutten Frans H, Mant Jonathan, Velicki Lazar, Seferović Petar M, Filipovic Nenad, Jakovljevic Djordje G
Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK.
Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
BMJ Open. 2025 Jan 7;15(1):e091793. doi: 10.1136/bmjopen-2024-091793.
Heart failure (HF) is a complex clinical syndrome. Accurate risk stratification and early diagnosis of HF are challenging as its signs and symptoms are non-specific. We propose to address this global challenge by developing the STRATIFYHF artificial intelligence-driven decision support system (DSS), which uses novel analytical methods in determining the risk, diagnosis and prognosis of HF. The primary aim of the present study is to collect prospective clinical data to validate the STRATIFYHF DSS (in terms of diagnostic accuracy, sensitivity and specificity) as a tool to predict the risk, diagnosis and progression of HF. The secondary outcomes are the demographic and clinical predictors of risk, diagnosis and progression of HF.
STRATIFYHF is a prospective, multicentre, longitudinal study that will recruit up to 1600 individuals (n=800 suspected/at risk of HF and n=800 diagnosed with HF) aged ≥45 years old, with up to 24 months of follow-up observations. Individuals suspected of HF will be divided into two categories based on current definitions and predefined inclusion criteria. All participants will have their medical history recorded, along with data on physical examination (signs and symptoms), blood tests including serum natriuretic peptides levels, ECG and echocardiogram results, as well as demographic, socioeconomic and lifestyle data, and use of complete novel technologies (cardiac output response to stress test and voice recognition biomarkers). All measurements will be recorded at baseline and at 12-month follow-up, with medical history and hospitalisation also recorded at 24-month follow-up. Cardiovascular MRI assessment will be completed in a subset of participants (n=20-40) from eligible clinical centres only at baseline. Each clinical centre will recruit a subset of participants (n=30) who will complete a 6-month home-based monitoring of clinical characteristics and accelerometry (wrist-worn monitor) to determine the feasibility and acceptability of the STRATIFYHF mobile application. Focus groups and semistructured interviews will be conducted with up to 15 healthcare professionals and up to 20 study participants (10 at risk of HF and 10 diagnosed with HF) to explore the needs of patients and healthcare professionals prior to the development of the STRATIFYHF DSS and to evaluate the acceptability of this mobile application.
Ethical approval has been granted by the East Midlands - Leicester Central Research Ethics Committee (24/EM/0101). Dissemination activities will include journal publications and presentations at conferences, as well as development of training materials and delivery of focused training on the STRATIFYHF DSS and mobile application. We will develop and propose policy guidelines for integration of the STRATIFYHF DSS and mobile application into the standard of care in the HF care pathway.
NCT06377319.
心力衰竭(HF)是一种复杂的临床综合征。由于其体征和症状不具有特异性,准确的风险分层和HF的早期诊断具有挑战性。我们提议通过开发STRATIFYHF人工智能驱动的决策支持系统(DSS)来应对这一全球挑战,该系统在确定HF的风险、诊断和预后时使用新颖的分析方法。本研究的主要目的是收集前瞻性临床数据,以验证STRATIFYHF DSS(在诊断准确性、敏感性和特异性方面)作为预测HF风险、诊断和进展的工具。次要结果是HF风险、诊断和进展的人口统计学和临床预测因素。
STRATIFYHF是一项前瞻性、多中心、纵向研究,将招募多达1600名年龄≥45岁的个体(n = 800名疑似/有HF风险者和n = 800名已诊断为HF者),进行长达24个月的随访观察。疑似HF的个体将根据当前定义和预先确定的纳入标准分为两类。所有参与者都将记录其病史,以及体格检查(体征和症状)数据、包括血清利钠肽水平在内的血液检测结果、心电图和超声心动图结果,以及人口统计学、社会经济和生活方式数据,以及使用全新技术(应激试验的心输出量反应和语音识别生物标志物)。所有测量将在基线和12个月随访时记录,病史和住院情况也将在24个月随访时记录。仅在基线时,将在符合条件的临床中心的一部分参与者(n = 20 - 40)中完成心血管磁共振成像评估。每个临床中心将招募一部分参与者(n = 30),他们将完成为期6个月的基于家庭的临床特征和加速度测量(腕戴式监测器),以确定STRATIFYHF移动应用程序的可行性和可接受性。将与多达15名医疗保健专业人员和多达20名研究参与者(10名有HF风险者和10名已诊断为HF者)进行焦点小组讨论和半结构化访谈,以在开发STRATIFYHF DSS之前探索患者和医疗保健专业人员的需求,并评估该移动应用程序的可接受性。
已获得东米德兰兹 - 莱斯特中央研究伦理委员会的伦理批准(24/EM/0101)。传播活动将包括期刊发表和在会议上的报告,以及开发培训材料并提供关于STRATIFYHF DSS和移动应用程序的重点培训。我们将制定并提出将STRATIFYHF DSS和移动应用程序整合到HF护理路径标准护理中的政策指南。
NCT06377319。