文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于可解释人工智能的社交媒体文本自杀和非自杀意念检测及增强集成技术

Explainable AI-based suicidal and non-suicidal ideations detection from social media text with enhanced ensemble technique.

作者信息

Alghazzawi Daniyal, Ullah Hayat, Tabassum Naila, Badri Sahar K, Asghar Muhammad Zubair

机构信息

Information Systems Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.

Gomal Research Institute of Computing (GRIC), Faculty of Computing, Gomal University, D. I. Khan (KP), Pakistan.

出版信息

Sci Rep. 2025 Jan 7;15(1):1111. doi: 10.1038/s41598-024-84275-6.


DOI:10.1038/s41598-024-84275-6
PMID:39774753
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11707005/
Abstract

This research presents a novel framework for distinguishing between actual and non-suicidal ideation in social media interactions using an ensemble technique. The prompt identification of sentiments on social networking platforms is crucial for timely intervention serving as a key tactic in suicide prevention efforts. However, conventional AI models often mask their decision-making processes primarily designed for classification purposes. Our methodology, along with an updated ensemble method, bridges the gap between Explainable AI and leverages a variety of machine learning algorithms to improve predictive accuracy. By leveraging Explainable AI's interpretability to analyze the features, the model elucidates the reasoning behind its classifications leading to a comprehension of hidden patterns associated with suicidal ideations. Our system is compared to cutting-edge methods on several social media datasets using experimental evaluations, demonstrating that it is superior, since it detects suicidal content more accurately than others. Consequently, this study presents a more reliable and interpretable strategy (F1-score for suicidal = 95.5% and Non-Suicidal = 99%), for monitoring and intervening in suicide-related online discussions.

摘要

本研究提出了一种新颖的框架,用于使用集成技术在社交媒体互动中区分实际自杀意念和非自杀意念。在社交网络平台上及时识别情绪对于及时干预至关重要,这是自杀预防工作中的关键策略。然而,传统的人工智能模型通常会掩盖其主要用于分类目的的决策过程。我们的方法以及更新的集成方法弥合了可解释人工智能之间的差距,并利用各种机器学习算法来提高预测准确性。通过利用可解释人工智能的可解释性来分析特征,该模型阐明了其分类背后的推理,从而有助于理解与自杀意念相关的隐藏模式。我们的系统在几个社交媒体数据集上与前沿方法进行了实验评估比较,结果表明它更具优势,因为它比其他方法能更准确地检测出自杀内容。因此,本研究提出了一种更可靠且可解释的策略(自杀意念的F1分数为95.5%,非自杀意念的F1分数为99%),用于监测和干预与自杀相关的在线讨论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f43d/11707005/55601a2e8959/41598_2024_84275_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f43d/11707005/e1093b50fbf5/41598_2024_84275_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f43d/11707005/ed64b4f9a22a/41598_2024_84275_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f43d/11707005/261f6b12b7c3/41598_2024_84275_Figa_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f43d/11707005/57f657e256e2/41598_2024_84275_Figb_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f43d/11707005/13bb10b5ae03/41598_2024_84275_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f43d/11707005/7997bb9f412e/41598_2024_84275_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f43d/11707005/bd1a27a4bdc4/41598_2024_84275_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f43d/11707005/2e409c6fffc0/41598_2024_84275_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f43d/11707005/55601a2e8959/41598_2024_84275_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f43d/11707005/e1093b50fbf5/41598_2024_84275_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f43d/11707005/ed64b4f9a22a/41598_2024_84275_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f43d/11707005/261f6b12b7c3/41598_2024_84275_Figa_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f43d/11707005/57f657e256e2/41598_2024_84275_Figb_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f43d/11707005/13bb10b5ae03/41598_2024_84275_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f43d/11707005/7997bb9f412e/41598_2024_84275_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f43d/11707005/bd1a27a4bdc4/41598_2024_84275_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f43d/11707005/2e409c6fffc0/41598_2024_84275_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f43d/11707005/55601a2e8959/41598_2024_84275_Fig7_HTML.jpg

相似文献

[1]
Explainable AI-based suicidal and non-suicidal ideations detection from social media text with enhanced ensemble technique.

Sci Rep. 2025-1-7

[2]
Explainable Predictive Model for Suicidal Ideation During COVID-19: Social Media Discourse Study.

J Med Internet Res. 2025-1-17

[3]
Detecting Suicidal Ideation in Social Media: An Ensemble Method Based on Feature Fusion.

Int J Environ Res Public Health. 2022-7-5

[4]
An Explainable Artificial Intelligence Text Classifier for Suicidality Prediction in Youth Crisis Text Line Users: Development and Validation Study.

JMIR Public Health Surveill. 2025-1-29

[5]
Leveraging Reddit for Suicidal Ideation Detection: A Review of Machine Learning and Natural Language Processing Techniques.

Int J Environ Res Public Health. 2022-8-19

[6]
Detecting and Analyzing Suicidal Ideation on Social Media Using Deep Learning and Machine Learning Models.

Int J Environ Res Public Health. 2022-10-3

[7]
Detecting Potentially Harmful and Protective Suicide-Related Content on Twitter: Machine Learning Approach.

J Med Internet Res. 2022-8-17

[8]
Proactive Suicide Prevention Online (PSPO): Machine Identification and Crisis Management for Chinese Social Media Users With Suicidal Thoughts and Behaviors.

J Med Internet Res. 2019-5-8

[9]
Machine Learning-Based Suicide Risk Prediction Model for Suicidal Trajectory on Social Media Following Suicidal Mentions: Independent Algorithm Validation.

J Med Internet Res. 2024-12-5

[10]
Artificial Intelligence and Suicide Prevention: A Systematic Review of Machine Learning Investigations.

Int J Environ Res Public Health. 2020-8-15

引用本文的文献

[1]
Demystifying diagnosis: an efficient deep learning technique with explainable AI to improve breast cancer detection.

PeerJ Comput Sci. 2025-4-16

本文引用的文献

[1]
A comparative study of different variable selection methods based on numerical simulation and empirical analysis.

PeerJ Comput Sci. 2023-8-16

[2]
Clustering ensemble in scRNA-seq data analysis: Methods, applications and challenges.

Comput Biol Med. 2023-6

[3]
Deep ensemble learning for automated non-advanced AMD classification using optimized retinal layer segmentation and SD-OCT scans.

Comput Biol Med. 2023-3

[4]
A Hybrid Deep Learning Model Using Grid Search and Cross-Validation for Effective Classification and Prediction of Suicidal Ideation from Social Network Data.

New Gener Comput. 2022

[5]
Detecting and Analyzing Suicidal Ideation on Social Media Using Deep Learning and Machine Learning Models.

Int J Environ Res Public Health. 2022-10-3

[6]
Detecting Suicidal Ideation in Social Media: An Ensemble Method Based on Feature Fusion.

Int J Environ Res Public Health. 2022-7-5

[7]
A Survey on Explainable Artificial Intelligence (XAI): Toward Medical XAI.

IEEE Trans Neural Netw Learn Syst. 2021-11

[8]
A machine learning approach predicts future risk to suicidal ideation from social media data.

NPJ Digit Med. 2020-5-26

[9]
Short-term prediction of suicidal thoughts and behaviors in adolescents: Can recent developments in technology and computational science provide a breakthrough?

J Affect Disord. 2019-3-6

[10]
Extracting psychiatric stressors for suicide from social media using deep learning.

BMC Med Inform Decis Mak. 2018-7-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索