Suppr超能文献

基于可解释人工智能的社交媒体文本自杀和非自杀意念检测及增强集成技术

Explainable AI-based suicidal and non-suicidal ideations detection from social media text with enhanced ensemble technique.

作者信息

Alghazzawi Daniyal, Ullah Hayat, Tabassum Naila, Badri Sahar K, Asghar Muhammad Zubair

机构信息

Information Systems Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.

Gomal Research Institute of Computing (GRIC), Faculty of Computing, Gomal University, D. I. Khan (KP), Pakistan.

出版信息

Sci Rep. 2025 Jan 7;15(1):1111. doi: 10.1038/s41598-024-84275-6.

Abstract

This research presents a novel framework for distinguishing between actual and non-suicidal ideation in social media interactions using an ensemble technique. The prompt identification of sentiments on social networking platforms is crucial for timely intervention serving as a key tactic in suicide prevention efforts. However, conventional AI models often mask their decision-making processes primarily designed for classification purposes. Our methodology, along with an updated ensemble method, bridges the gap between Explainable AI and leverages a variety of machine learning algorithms to improve predictive accuracy. By leveraging Explainable AI's interpretability to analyze the features, the model elucidates the reasoning behind its classifications leading to a comprehension of hidden patterns associated with suicidal ideations. Our system is compared to cutting-edge methods on several social media datasets using experimental evaluations, demonstrating that it is superior, since it detects suicidal content more accurately than others. Consequently, this study presents a more reliable and interpretable strategy (F1-score for suicidal = 95.5% and Non-Suicidal = 99%), for monitoring and intervening in suicide-related online discussions.

摘要

本研究提出了一种新颖的框架,用于使用集成技术在社交媒体互动中区分实际自杀意念和非自杀意念。在社交网络平台上及时识别情绪对于及时干预至关重要,这是自杀预防工作中的关键策略。然而,传统的人工智能模型通常会掩盖其主要用于分类目的的决策过程。我们的方法以及更新的集成方法弥合了可解释人工智能之间的差距,并利用各种机器学习算法来提高预测准确性。通过利用可解释人工智能的可解释性来分析特征,该模型阐明了其分类背后的推理,从而有助于理解与自杀意念相关的隐藏模式。我们的系统在几个社交媒体数据集上与前沿方法进行了实验评估比较,结果表明它更具优势,因为它比其他方法能更准确地检测出自杀内容。因此,本研究提出了一种更可靠且可解释的策略(自杀意念的F1分数为95.5%,非自杀意念的F1分数为99%),用于监测和干预与自杀相关的在线讨论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f43d/11707005/e1093b50fbf5/41598_2024_84275_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验