Varnava Yiannis, Jakate Kiran, Garnett Richard, Androutsos Dimitrios, Tyrrell Pascal N, Khademi April
Department of Electrical, Computer, and Biomedical Engineering, Toronto Metropolitan University, Toronto, ON, Canada.
Department of Pathology, Unity Health Toronto, Toronto, ON, Canada.
Sci Rep. 2025 Jan 7;15(1):1127. doi: 10.1038/s41598-024-80495-y.
Pathology provides the definitive diagnosis, and Artificial Intelligence (AI) tools are poised to improve accuracy, inter-rater agreement, and turn-around time (TAT) of pathologists, leading to improved quality of care. A high value clinical application is the grading of Lymph Node Metastasis (LNM) which is used for breast cancer staging and guides treatment decisions. A challenge of implementing AI tools widely for LNM classification is domain shift, where Out-of-Distribution (OOD) data has a different distribution than the In-Distribution (ID) data used to train the model, resulting in a drop in performance in OOD data. This work proposes a novel clustering and sampling method to automatically curate training datasets in an unsupervised manner with the aim of improving model generalization abilities. To evaluate the generalization performance of the proposed models, we applied a novel use of the Two One-sided Tests (TOST) method. This method examines whether the performance on ID and OOD data is equivalent, serving as a proxy for generalization. We provide the first evidence for computing equivalence margins that are data-dependent, which reduces subjectivity. The proposed framework shows the ensembled models constructed from models that generalized across both tumor and normal patches enhanced performance, achieving an F1 score of 0.81 for LNM classification on unseen ID and OOD samples. Interactive viewing of slide-level segmentations can be accessed on PathcoreFlow through https://web.pathcore.com/folder/18555?s=QTJVHJuhrfe5 . Segmentation models are available at https://github.com/IAMLAB-Ryerson/OOD-Generalization-LNM .
病理学提供最终诊断,而人工智能(AI)工具有望提高病理学家的诊断准确性、评分者间一致性和周转时间(TAT),从而提升医疗质量。一个高价值的临床应用是淋巴结转移(LNM)分级,它用于乳腺癌分期并指导治疗决策。在LNM分类中广泛应用AI工具面临的一个挑战是域转移,即分布外(OOD)数据与用于训练模型的分布内(ID)数据具有不同的分布,导致OOD数据的性能下降。这项工作提出了一种新颖的聚类和采样方法,以无监督方式自动整理训练数据集,旨在提高模型的泛化能力。为了评估所提出模型的泛化性能,我们应用了一种新颖的双单侧检验(TOST)方法。该方法检查ID数据和OOD数据上的性能是否等效,以此作为泛化的代理。我们提供了第一个计算依赖于数据的等效裕度的证据,这减少了主观性。所提出的框架表明,由在肿瘤和正常切片上都具有泛化能力的模型构建的集成模型提高了性能,在未见的ID和OOD样本上进行LNM分类时,F1分数达到0.81。可通过https://web.pathcore.com/folder/18555?s=QTJVHJuhrfe5在PathcoreFlow上交互式查看幻灯片级别的分割。分割模型可在https://github.com/IAMLAB-Ryerson/OOD-Generalization-LNM获取。
Zhonghua Zhong Liu Za Zhi. 2018-12-23
Zhonghua Wei Chang Wai Ke Za Zhi. 2025-1-25
Med Image Anal. 2024-5
CA Cancer J Clin. 2024
Sci Rep. 2023-4-13
IEEE Trans Pattern Anal Mach Intell. 2023-6
Cancers (Basel). 2022-11-3
J Pathol Inform. 2022-7-25