文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于乳腺癌淋巴结转移分割的分布外泛化

Out-of-distribution generalization for segmentation of lymph node metastasis in breast cancer.

作者信息

Varnava Yiannis, Jakate Kiran, Garnett Richard, Androutsos Dimitrios, Tyrrell Pascal N, Khademi April

机构信息

Department of Electrical, Computer, and Biomedical Engineering, Toronto Metropolitan University, Toronto, ON, Canada.

Department of Pathology, Unity Health Toronto, Toronto, ON, Canada.

出版信息

Sci Rep. 2025 Jan 7;15(1):1127. doi: 10.1038/s41598-024-80495-y.


DOI:10.1038/s41598-024-80495-y
PMID:39775089
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11707152/
Abstract

Pathology provides the definitive diagnosis, and Artificial Intelligence (AI) tools are poised to improve accuracy, inter-rater agreement, and turn-around time (TAT) of pathologists, leading to improved quality of care. A high value clinical application is the grading of Lymph Node Metastasis (LNM) which is used for breast cancer staging and guides treatment decisions. A challenge of implementing AI tools widely for LNM classification is domain shift, where Out-of-Distribution (OOD) data has a different distribution than the In-Distribution (ID) data used to train the model, resulting in a drop in performance in OOD data. This work proposes a novel clustering and sampling method to automatically curate training datasets in an unsupervised manner with the aim of improving model generalization abilities. To evaluate the generalization performance of the proposed models, we applied a novel use of the Two One-sided Tests (TOST) method. This method examines whether the performance on ID and OOD data is equivalent, serving as a proxy for generalization. We provide the first evidence for computing equivalence margins that are data-dependent, which reduces subjectivity. The proposed framework shows the ensembled models constructed from models that generalized across both tumor and normal patches enhanced performance, achieving an F1 score of 0.81 for LNM classification on unseen ID and OOD samples. Interactive viewing of slide-level segmentations can be accessed on PathcoreFlow through https://web.pathcore.com/folder/18555?s=QTJVHJuhrfe5 . Segmentation models are available at https://github.com/IAMLAB-Ryerson/OOD-Generalization-LNM .

摘要

病理学提供最终诊断,而人工智能(AI)工具有望提高病理学家的诊断准确性、评分者间一致性和周转时间(TAT),从而提升医疗质量。一个高价值的临床应用是淋巴结转移(LNM)分级,它用于乳腺癌分期并指导治疗决策。在LNM分类中广泛应用AI工具面临的一个挑战是域转移,即分布外(OOD)数据与用于训练模型的分布内(ID)数据具有不同的分布,导致OOD数据的性能下降。这项工作提出了一种新颖的聚类和采样方法,以无监督方式自动整理训练数据集,旨在提高模型的泛化能力。为了评估所提出模型的泛化性能,我们应用了一种新颖的双单侧检验(TOST)方法。该方法检查ID数据和OOD数据上的性能是否等效,以此作为泛化的代理。我们提供了第一个计算依赖于数据的等效裕度的证据,这减少了主观性。所提出的框架表明,由在肿瘤和正常切片上都具有泛化能力的模型构建的集成模型提高了性能,在未见的ID和OOD样本上进行LNM分类时,F1分数达到0.81。可通过https://web.pathcore.com/folder/18555?s=QTJVHJuhrfe5在PathcoreFlow上交互式查看幻灯片级别的分割。分割模型可在https://github.com/IAMLAB-Ryerson/OOD-Generalization-LNM获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a07/11707152/4da76204c7ce/41598_2024_80495_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a07/11707152/e19f0b3d04cb/41598_2024_80495_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a07/11707152/1852088742f0/41598_2024_80495_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a07/11707152/459f70c23930/41598_2024_80495_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a07/11707152/c928feba3d81/41598_2024_80495_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a07/11707152/31460b2ff41d/41598_2024_80495_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a07/11707152/52f85d90202f/41598_2024_80495_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a07/11707152/b29f4a423905/41598_2024_80495_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a07/11707152/4da76204c7ce/41598_2024_80495_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a07/11707152/e19f0b3d04cb/41598_2024_80495_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a07/11707152/1852088742f0/41598_2024_80495_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a07/11707152/459f70c23930/41598_2024_80495_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a07/11707152/c928feba3d81/41598_2024_80495_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a07/11707152/31460b2ff41d/41598_2024_80495_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a07/11707152/52f85d90202f/41598_2024_80495_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a07/11707152/b29f4a423905/41598_2024_80495_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a07/11707152/4da76204c7ce/41598_2024_80495_Fig8_HTML.jpg

相似文献

[1]
Out-of-distribution generalization for segmentation of lymph node metastasis in breast cancer.

Sci Rep. 2025-1-7

[2]
[Current applications of artificial intelligence in tumor histopathology].

Zhonghua Zhong Liu Za Zhi. 2018-12-23

[3]
Utility of artificial intelligence with deep learning of hematoxylin and eosin-stained whole slide images to predict lymph node metastasis in T1 colorectal cancer using endoscopically resected specimens; prediction of lymph node metastasis in T1 colorectal cancer.

J Gastroenterol. 2022-9

[4]
Whole slide image-based prediction of lymph node metastasis in T1 colorectal cancer using unsupervised artificial intelligence.

Dig Endosc. 2023-11

[5]
[Artificial intelligence for lymph node metastasis prediction in gastric cancer: research progress].

Zhonghua Wei Chang Wai Ke Za Zhi. 2025-1-25

[6]
Artificial Intelligence Helps Pathologists Increase Diagnostic Accuracy and Efficiency in the Detection of Breast Cancer Lymph Node Metastases.

Am J Surg Pathol. 2024-7-1

[7]
Artificial Intelligence-Aided Diagnosis of Breast Cancer Lymph Node Metastasis on Histologic Slides in a Digital Workflow.

Mod Pathol. 2023-8

[8]
Artificial intelligence-based model for lymph node metastases detection on whole slide images in bladder cancer: a retrospective, multicentre, diagnostic study.

Lancet Oncol. 2023-4

[9]
Explainable machine learning versus known nomogram for predicting non-sentinel lymph node metastases in breast cancer patients: A comparative study.

Comput Biol Med. 2025-1

[10]
Computer-Assisted Diagnosis of Lymph Node Metastases in Colorectal Cancers Using Transfer Learning With an Ensemble Model.

Mod Pathol. 2023-5

本文引用的文献

[1]
Computational methods for metastasis detection in lymph nodes and characterization of the metastasis-free lymph node microarchitecture: A systematic-narrative hybrid review.

J Pathol Inform. 2024-2-4

[2]
Cross-scale multi-instance learning for pathological image diagnosis.

Med Image Anal. 2024-5

[3]
Cancer statistics, 2024.

CA Cancer J Clin. 2024

[4]
AI improves accuracy, agreement and efficiency of pathologists for Ki67 assessments in breast cancer.

Sci Rep. 2024-1-13

[5]
Multi-center study on predicting breast cancer lymph node status from core needle biopsy specimens using multi-modal and multi-instance deep learning.

NPJ Breast Cancer. 2023-7-13

[6]
Dense Dilated Multi-Scale Supervised Attention-Guided Network for histopathology image segmentation.

Comput Biol Med. 2023-9

[7]
Generalization of vision pre-trained models for histopathology.

Sci Rep. 2023-4-13

[8]
Mutual-Assistance Learning for Standalone Mono-Modality Survival Analysis of Human Cancers.

IEEE Trans Pattern Anal Mach Intell. 2023-6

[9]
Generalization of Deep Learning in Digital Pathology: Experience in Breast Cancer Metastasis Detection.

Cancers (Basel). 2022-11-3

[10]
Impact of scanner variability on lymph node segmentation in computational pathology.

J Pathol Inform. 2022-7-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索