文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

扫描仪变异性对计算病理学中淋巴结分割的影响。

Impact of scanner variability on lymph node segmentation in computational pathology.

作者信息

Khan Amjad, Janowczyk Andrew, Müller Felix, Blank Annika, Nguyen Huu Giao, Abbet Christian, Studer Linda, Lugli Alessandro, Dawson Heather, Thiran Jean-Philippe, Zlobec Inti

机构信息

Institute of Pathology, University of Bern, Murtenstrasse 31, CH-3008 Bern, Switzerland.

Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH 44106, USA.

出版信息

J Pathol Inform. 2022 Jul 25;13:100127. doi: 10.1016/j.jpi.2022.100127. eCollection 2022.


DOI:10.1016/j.jpi.2022.100127
PMID:36268105
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9577043/
Abstract

Computer-aided diagnostics in histopathology are based on the digitization of glass slides. However, heterogeneity between the images generated by different slide scanners can unfavorably affect the performance of computational algorithms. Here, we evaluate the impact of scanner variability on lymph node segmentation due to its clinical importance in colorectal cancer diagnosis. 100 slides containing 276 lymph nodes were digitized using 4 different slide scanners, and 50 of the lymph nodes containing metastatic cancer cells. These 400 scans were subsequently annotated by 2 experienced pathologists to precisely label lymph node boundary. Three different segmentation methods were then applied and compared: Hematoxylin-channel-based thresholding (HCT), Hematoxylin-based active contours (HAC), and a convolution neural network (U-Net). Evaluation of U-Net trained from both a single scanner and an ensemble of all scanners was completed. Mosaic images based on representative tiles from a scanner were used as a reference image to normalize the new data from different test scanners to evaluate the performance of a pre-trained model. Fine-tuning was carried out by using weights of a model trained on one scanner to initialize model weights for other scanners. To evaluate the domain generalization, domain adversarial learning and stain mix-up augmentation were also implemented. Results show that fine-tuning and domain adversarial learning decreased the impact of scanner variability and greatly improved segmentation across scanners. Overall, U-Net with stain mix-up (Matthews correlation coefficient (MCC) = 0.87), domain adversarial learning (MCC = 0.86), and HAC (MCC = 0.87) were shown to outperform HCT (MCC = 0.81) for segmentation of lymph nodes when compared against the ground truth. The findings of this study should be considered for future algorithms applied in diagnostic routines.

摘要

组织病理学中的计算机辅助诊断基于玻璃切片的数字化。然而,不同玻片扫描仪生成的图像之间的异质性可能会对计算算法的性能产生不利影响。在此,由于其在结直肠癌诊断中的临床重要性,我们评估了扫描仪变异性对淋巴结分割的影响。使用4种不同的玻片扫描仪对包含276个淋巴结的100张玻片进行数字化处理,其中50个淋巴结含有转移癌细胞。随后,由2名经验丰富的病理学家对这400次扫描进行注释,以精确标记淋巴结边界。然后应用并比较了三种不同的分割方法:基于苏木精通道的阈值分割(HCT)、基于苏木精的活动轮廓(HAC)和卷积神经网络(U-Net)。完成了从单个扫描仪和所有扫描仪的集合中训练U-Net的评估。基于来自扫描仪的代表性切片的拼接图像被用作参考图像,以对来自不同测试扫描仪的新数据进行归一化,从而评估预训练模型的性能。通过使用在一个扫描仪上训练的模型的权重来初始化其他扫描仪的模型权重进行微调。为了评估域泛化,还实施了域对抗学习和染色混合增强。结果表明,微调与域对抗学习降低了扫描仪变异性的影响,并大大提高了跨扫描仪的分割效果。总体而言,与真实情况相比,具有染色混合(马修斯相关系数(MCC)=0.87)、域对抗学习(MCC=0.86)和HAC(MCC=0.87)的U-Net在淋巴结分割方面表现优于HCT(MCC=0.81)。本研究的结果应被应用于未来诊断程序的算法中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3df/9577043/4c594f39cc11/fx5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3df/9577043/7ccfde57685a/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3df/9577043/141a5e9f4020/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3df/9577043/c54cb4f0cb56/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3df/9577043/b024011b0bb1/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3df/9577043/52fbfbb0efe4/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3df/9577043/2555e275350e/fx2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3df/9577043/fb3a35b5ae45/fx3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3df/9577043/7f7fa5175b23/fx4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3df/9577043/4c594f39cc11/fx5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3df/9577043/7ccfde57685a/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3df/9577043/141a5e9f4020/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3df/9577043/c54cb4f0cb56/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3df/9577043/b024011b0bb1/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3df/9577043/52fbfbb0efe4/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3df/9577043/2555e275350e/fx2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3df/9577043/fb3a35b5ae45/fx3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3df/9577043/7f7fa5175b23/fx4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3df/9577043/4c594f39cc11/fx5.jpg

相似文献

[1]
Impact of scanner variability on lymph node segmentation in computational pathology.

J Pathol Inform. 2022-7-25

[2]
Computer-Assisted Diagnosis of Lymph Node Metastases in Colorectal Cancers Using Transfer Learning With an Ensemble Model.

Mod Pathol. 2023-5

[3]
Whole slide imaging (WSI) scanner differences influence optical and computed properties of digitized prostate cancer histology.

J Pathol Inform. 2023-7-4

[4]
The Use of Deep Learning-Based Computer Diagnostic Algorithm for Detection of Lymph Node Metastases of Gastric Adenocarcinoma.

Int J Surg Pathol. 2023-9

[5]
Improving segmentation reliability of multi-scanner brain images using a generative adversarial network.

Quant Imaging Med Surg. 2022-3

[6]
Automatic segmentation of the thalamus using a massively trained 3D convolutional neural network: higher sensitivity for the detection of reduced thalamus volume by improved inter-scanner stability.

Eur Radiol. 2023-3

[7]
ARPM-net: A novel CNN-based adversarial method with Markov random field enhancement for prostate and organs at risk segmentation in pelvic CT images.

Med Phys. 2021-1

[8]
A multiple-channel and atrous convolution network for ultrasound image segmentation.

Med Phys. 2020-12

[9]
Diagnostic validation of a portable whole slide imaging scanner for lymphoma diagnosis in resource-constrained setting: A cross-sectional study.

J Pathol Inform. 2023-1-9

[10]
Robustness of apparent diffusion coefficient-based lymph node classification for diagnosis of prostate cancer metastasis.

Eur Radiol. 2024-7

引用本文的文献

[1]
Multicenter Histology Image Integration and Multiscale Deep Learning for Machine Learning-Enabled Pediatric Sarcoma Classification.

medRxiv. 2025-6-11

[2]
Rethinking model prototyping through the MedMNIST+ dataset collection.

Sci Rep. 2025-3-5

[3]
Out-of-distribution generalization for segmentation of lymph node metastasis in breast cancer.

Sci Rep. 2025-1-7

[4]
Computational methods for metastasis detection in lymph nodes and characterization of the metastasis-free lymph node microarchitecture: A systematic-narrative hybrid review.

J Pathol Inform. 2024-2-4

[5]
Data-driven color augmentation for H&E stained images in computational pathology.

J Pathol Inform. 2023-1-3

[6]
Digital pathology implementation in a private laboratory: The CEDAP experience.

J Pathol Inform. 2023-1-3

[7]
Stain normalization in digital pathology: Clinical multi-center evaluation of image quality.

J Pathol Inform. 2022-9-24

本文引用的文献

[1]
Measuring Domain Shift for Deep Learning in Histopathology.

IEEE J Biomed Health Inform. 2021-2

[2]
Impact of rescanning and normalization on convolutional neural network performance in multi-center, whole-slide classification of prostate cancer.

Sci Rep. 2020-9-1

[3]
NuClick: A deep learning framework for interactive segmentation of microscopic images.

Med Image Anal. 2020-10

[4]
Whole slide images based cancer survival prediction using attention guided deep multiple instance learning networks.

Med Image Anal. 2020-10

[5]
The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation.

BMC Genomics. 2020-1-2

[6]
Assessing the Impact of Color Normalization in Convolutional Neural Network-Based Nuclei Segmentation Frameworks.

Front Bioeng Biotechnol. 2019-11-1

[7]
Staining Invariant Features for Improving Generalization of Deep Convolutional Neural Networks in Computational Pathology.

Front Bioeng Biotechnol. 2019-8-23

[8]
Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology.

Med Image Anal. 2019-8-21

[9]
Clinical-grade computational pathology using weakly supervised deep learning on whole slide images.

Nat Med. 2019-7-15

[10]
Adaptive color deconvolution for histological WSI normalization.

Comput Methods Programs Biomed. 2019-1-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索