School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA.
NTT Physics and Informatics Laboratories, NTT Research, Inc., Sunnyvale, CA, 94085, USA.
Nat Commun. 2022 Jan 10;13(1):123. doi: 10.1038/s41467-021-27774-8.
Deep learning has become a widespread tool in both science and industry. However, continued progress is hampered by the rapid growth in energy costs of ever-larger deep neural networks. Optical neural networks provide a potential means to solve the energy-cost problem faced by deep learning. Here, we experimentally demonstrate an optical neural network based on optical dot products that achieves 99% accuracy on handwritten-digit classification using 3.1 detected photons per weight multiplication and ~90% accuracy using ~0.66 photons (2.5 × 10 J of optical energy) per weight multiplication. The fundamental principle enabling our sub-photon-per-multiplication demonstration-noise reduction from the accumulation of scalar multiplications in dot-product sums-is applicable to many different optical-neural-network architectures. Our work shows that optical neural networks can achieve accurate results using extremely low optical energies.
深度学习已成为科学和工业领域广泛使用的工具。然而,不断增长的能源成本严重阻碍了更大规模深度神经网络的发展。光神经网络为解决深度学习面临的能源成本问题提供了一种潜在的手段。在这里,我们通过实验展示了一种基于光点积的光神经网络,它在手写数字分类任务上达到了 99%的准确率,在使用约 3.1 个检测光子/权重乘法和约 0.66 个光子(约 2.5×10^-19 焦耳的光能量)/权重乘法时达到了约 90%的准确率。使我们能够实现亚光子/乘法演示的基本原理——来自点积和中标量乘法累加的噪声降低——适用于许多不同的光神经网络架构。我们的工作表明,光神经网络可以使用极低的光能量获得准确的结果。