Gazdzinski Lisa M, Chung Luke, Spring Shoshana, Botelho Owen, Stefanovic Bojana, Nieman Brian J, Heyn Chinthaka C, Sled John G
Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario, Canada.
Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
Magn Reson Med. 2025 May;93(5):2049-2058. doi: 10.1002/mrm.30405. Epub 2025 Jan 8.
Brain temperature is tightly regulated and reflects a balance between cerebral metabolic heat production and heat transfer between the brain, blood, and external environment. Blood temperature and flow are critical to the regulation of brain temperature. Current methods for measuring in vivo brain and blood temperature are invasive and impractical for use in small animals. This work presents a methodology to measure both brain and arterial blood temperature in anesthetized mice by MRI using a paramagnetic lanthanide complex: thulium tetramethyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (TmDOTMA).
A phase-based imaging approach using a multi-TE gradient echo sequence was used to measure the temperature-dependent chemical shift difference between thulium tetramethyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid methyl protons and water, and from this calculate absolute temperature using calibration data.
In a series of mice in which core body temperature was held stable but at different values within the range of 33° to 37°C, brain temperature away from the midline was independent of carotid artery blood temperature. In contrast, midline voxels correlated with carotid artery blood temperature, likely reflecting the preponderance of larger arteries and veins in this region.
These results are consistent with brain temperature being actively regulated. A limitation of the present implementation is that the spatial resolution in the brain is coarse relative to the size of the mouse brain, and further optimization is required for this method to be applied for finer spatial scale mapping or to characterize focal pathology.
脑温受到严格调控,反映了脑代谢产热与脑、血液及外部环境之间热传递的平衡。血液温度和流量对脑温调节至关重要。目前用于测量活体脑温和血温的方法具有侵入性,不适用于小动物。本研究提出了一种利用顺磁性镧系元素配合物:四甲基-1,4,7,10-四氮杂环十二烷-1,4,7,10-四乙酸铥(TmDOTMA),通过磁共振成像(MRI)测量麻醉小鼠脑温和动脉血温的方法。
采用基于相位的成像方法,利用多回波时间(TE)梯度回波序列测量四甲基-1,4,7,10-四氮杂环十二烷-1,4,7,10-四乙酸铥甲基质子与水之间的温度依赖性化学位移差异,并据此利用校准数据计算绝对温度。
在一系列小鼠中,其核心体温保持稳定,但在33℃至37℃范围内处于不同值,远离中线的脑温与颈动脉血温无关。相比之下,中线体素与颈动脉血温相关,这可能反映了该区域较大动静脉的优势。
这些结果与脑温受到主动调节一致。本方法的一个局限性是,相对于小鼠脑的大小,脑内的空间分辨率较粗,该方法要应用于更精细的空间尺度映射或表征局灶性病变,还需要进一步优化。