Suppr超能文献

在较低的核心体温下,深部/核心静脉的横截面积较小。

Cross-sectional areas of deep/core veins are smaller at lower core body temperatures.

作者信息

Crouch Anna Colleen, Scheven Ulrich M, Greve Joan M

机构信息

Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan.

Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.

出版信息

Physiol Rep. 2018 Aug;6(16):e13839. doi: 10.14814/phy2.13839.

Abstract

The cardiovascular system plays a crucial role in thermoregulation. Deep core veins, due to their large size and role in returning blood to the heart, are an important part of this system. The response of veins to increasing core temperature has not been adequately studied in vivo. Our objective was to noninvasively quantify in C57BL/6 mice the response of artery-vein pairs to increases in body temperature. Adult male mice were anesthetized and underwent magnetic resonance imaging. Data were acquired from three colocalized vessel pairs (the neck [carotid/jugular], torso [aorta/inferior vena cava (IVC)], periphery [femoral artery/vein]) at core temperatures of 35, 36, 37, and 38°C. Cross-sectional area increased with increasing temperature for all vessels, excluding the carotid. Average area of the jugular, aorta, femoral artery, and vein linearly increased with temperature (0.10, 0.017, 0.017, and 0.027 mm /°C, respectively; P < 0.05). On average, the IVC has the largest venous response for area (18.2%/°C, vs. jugular 9.0 and femoral 10.9%/°C). Increases in core temperature from 35 to 38 °C resulted in an increase in contact length between the aorta/IVC of 29.3% (P = 0.007) and between the femoral artery/vein of 28.0% (P = 0.03). Previously unidentified increases in the IVC area due to increasing core temperature are biologically important because they may affect conductive and convective heat transfer. Vascular response to temperature varied based on location and vessel type. Leveraging noninvasive methodology to quantify vascular responses to temperature could be combined with bioheat modeling to improve understanding of thermoregulation.

摘要

心血管系统在体温调节中起着至关重要的作用。深部核心静脉因其管径较大且在将血液回流至心脏方面发挥作用,是该系统的重要组成部分。静脉对核心温度升高的反应在体内尚未得到充分研究。我们的目标是在C57BL/6小鼠中无创量化动脉 - 静脉对体温升高的反应。成年雄性小鼠麻醉后接受磁共振成像。在35、36、37和38°C的核心温度下,从三对共定位血管(颈部[颈动脉/颈静脉]、躯干[主动脉/下腔静脉(IVC)]、外周[股动脉/静脉])获取数据。除颈动脉外,所有血管的横截面积均随温度升高而增加。颈静脉、主动脉、股动脉和静脉的平均面积随温度呈线性增加(分别为0.10、0.017、0.017和0.027平方毫米/°C;P < 0.05)。平均而言,IVC的面积反应最大(18.2%/°C,而颈静脉为9.0%/°C,股静脉为10.9%/°C)。核心温度从35°C升高到38°C导致主动脉/IVC之间的接触长度增加29.3%(P = 0.007),股动脉/静脉之间的接触长度增加28.0%(P = 0.03)。先前未发现的由于核心温度升高导致的IVC面积增加具有生物学重要性,因为它们可能影响传导和对流热传递。血管对温度的反应因位置和血管类型而异。利用无创方法量化血管对温度的反应可与生物热模型相结合,以增进对体温调节的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d6b/6113131/8b78f34e55d2/PHY2-6-e13839-g001.jpg

相似文献

1
Cross-sectional areas of deep/core veins are smaller at lower core body temperatures.
Physiol Rep. 2018 Aug;6(16):e13839. doi: 10.14814/phy2.13839.
2
Cross-sectional area of the murine aorta linearly increases with increasing core body temperature.
Int J Hyperthermia. 2018 Nov;34(7):1121-1133. doi: 10.1080/02656736.2017.1396364. Epub 2017 Nov 6.
3
Hemodynamic response to thermal stress varies with sex and age: a murine MRI study.
Int J Hyperthermia. 2022;39(1):69-80. doi: 10.1080/02656736.2021.2018510.
4
Dimension and overlap of femoral and neck blood vessels in neonates.
Pediatr Crit Care Med. 2012 May;13(3):312-7. doi: 10.1097/PCC.0b013e3182257a4c.
5
In Vivo MRI Assessment of Blood Flow in Arteries and Veins from Head-to-Toe Across Age and Sex in C57BL/6 Mice.
Ann Biomed Eng. 2020 Jan;48(1):329-341. doi: 10.1007/s10439-019-02350-w. Epub 2019 Aug 27.
6
Measurements of central blood vessels in infants and children: normal values.
Cathet Cardiovasc Diagn. 1992 Nov;27(3):197-201. doi: 10.1002/ccd.1810270308.
9
Regional variability of prostacyclin biosynthesis.
Arteriosclerosis. 1989 May-Jun;9(3):368-73. doi: 10.1161/01.atv.9.3.368.

引用本文的文献

1
Hemodynamic response to thermal stress varies with sex and age: a murine MRI study.
Int J Hyperthermia. 2022;39(1):69-80. doi: 10.1080/02656736.2021.2018510.
3
In Vivo MRI Assessment of Blood Flow in Arteries and Veins from Head-to-Toe Across Age and Sex in C57BL/6 Mice.
Ann Biomed Eng. 2020 Jan;48(1):329-341. doi: 10.1007/s10439-019-02350-w. Epub 2019 Aug 27.

本文引用的文献

1
Cross-sectional area of the murine aorta linearly increases with increasing core body temperature.
Int J Hyperthermia. 2018 Nov;34(7):1121-1133. doi: 10.1080/02656736.2017.1396364. Epub 2017 Nov 6.
3
Structural and Functional Differences Between Porcine Aorta and Vena Cava.
J Biomech Eng. 2017 Jul 1;139(7):0710071-8. doi: 10.1115/1.4036261.
4
Arterio-venous anastomoses in the human skin and their role in temperature control.
Temperature (Austin). 2015 Oct 12;3(1):92-103. doi: 10.1080/23328940.2015.1088502. eCollection 2016 Jan-Mar.
5
Temperature and blood flow distribution in the human leg during passive heat stress.
J Appl Physiol (1985). 2016 May 1;120(9):1047-58. doi: 10.1152/japplphysiol.00965.2015. Epub 2016 Jan 28.
6
An advanced computational bioheat transfer model for a human body with an embedded systemic circulation.
Biomech Model Mechanobiol. 2016 Oct;15(5):1173-90. doi: 10.1007/s10237-015-0751-4. Epub 2015 Dec 26.
7
Cerebral Vascular Control and Metabolism in Heat Stress.
Compr Physiol. 2015 Jul 1;5(3):1345-80. doi: 10.1002/cphy.c140066.
9
Effects of short-term environmental hyperthermia on patterns of cerebral blood flow.
Physiol Behav. 2014 Apr 10;128:99-107. doi: 10.1016/j.physbeh.2014.01.028. Epub 2014 Feb 14.
10
Energy dissipation in brown adipose tissue: from mice to men.
Mol Cell Endocrinol. 2013 Oct 15;379(1-2):43-50. doi: 10.1016/j.mce.2013.04.017. Epub 2013 Apr 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验