Suppr超能文献

射频线圈:非物理学家实用指南。

RF coils: A practical guide for nonphysicists.

作者信息

Gruber Bernhard, Froeling Martijn, Leiner Tim, Klomp Dennis W J

机构信息

A.A. Martinos Center for Biomedical Imaging, Harvard-MIT Division of Health Sciences & Technology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.

Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA.

出版信息

J Magn Reson Imaging. 2018 Jun 13;48(3):590-604. doi: 10.1002/jmri.26187.

Abstract

UNLABELLED

Radiofrequency (RF) coils are an essential MRI hardware component. They directly impact the spatial and temporal resolution, sensitivity, and uniformity in MRI. Advances in RF hardware have resulted in a variety of designs optimized for specific clinical applications. RF coils are the "antennas" of the MRI system and have two functions: first, to excite the magnetization by broadcasting the RF power (Tx-Coil) and second to receive the signal from the excited spins (Rx-Coil). Transmit RF Coils emit magnetic field pulses ( B1+) to rotate the net magnetization away from its alignment with the main magnetic field (B ), resulting in a transverse precessing magnetization. Due to the precession around the static main magnetic field, the magnetic flux in the receive RF Coil ( B1-) changes, which generates a current I. This signal is "picked-up" by an antenna and preamplified, usually mixed down to a lower frequency, digitized, and processed by a computer to finally reconstruct an image or a spectrum. Transmit and receive functionality can be combined in one RF Coil (Tx/Rx Coils). This review looks at the fundamental principles of an MRI RF coil from the perspective of clinicians and MR technicians and summarizes the current advances and developments in technology.

LEVEL OF EVIDENCE

1 Technical Efficacy: Stage 6.

摘要

未标注

射频(RF)线圈是磁共振成像(MRI)硬件的重要组成部分。它们直接影响MRI的空间和时间分辨率、灵敏度及均匀性。射频硬件的进步带来了针对特定临床应用进行优化的多种设计。射频线圈是MRI系统的“天线”,具有两个功能:第一,通过发射射频功率来激发磁化(发射线圈);第二,接收来自受激自旋的信号(接收线圈)。发射射频线圈发射磁场脉冲(B1 +),使净磁化从与主磁场(B)的对齐方向旋转开,从而产生横向进动磁化。由于围绕静态主磁场的进动,接收射频线圈中的磁通量(B1 -)发生变化,进而产生电流I。该信号由天线“拾取”并进行前置放大,通常下变频到较低频率,数字化后由计算机处理,最终重建图像或频谱。发射和接收功能可组合在一个射频线圈中(收发线圈)。本综述从临床医生和磁共振技术人员的角度探讨了MRI射频线圈的基本原理,并总结了当前技术的进展与发展情况。

证据水平

1 技术效能:6级。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcd2/6175221/0d5d43a9dda5/JMRI-48-590-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验