Yuan Huijuan, Miao Zeyu, Wan Chao, Wang Jingjing, Liu Jinzhi, Li Yiwei, Xiao Yujin, Chen Peng, Liu Bi-Feng
The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
Shenzhen YHLO Biotech Co., Ltd., Shenzhen, Guangdong, China.
Lab Chip. 2025 Feb 25;25(5):1015-1046. doi: 10.1039/d4lc00779d.
Point-of-care testing (POCT) holds significant importance in the field of infectious disease prevention and control, as well as personalized precision medicine. The emerging microfluidics, capable of minimal reagent consumption, integration, and a high degree of automation, play a pivotal role in POCT. Centrifugal microfluidics, also termed lab-on-a-disc (LOAD), is a significant subfield of microfluidics that integrates crucial analytical steps onto a single chip, thereby optimizing the process and enabling high-throughput, automated analysis. By utilizing rotational mechanics to precisely control fluid dynamics without external pressure sources, centrifugal microfluidics facilitates swift operations ideal for urgent medical and field settings. This review provides a comprehensive overview of the latest advancements in centrifugal microfluidics for POCT, covering both theoretical principles and practical applications. We begin by introducing the fundamental operational principles, fluidic control mechanisms, and signal output detection methods. Subsequently, we delve into the typical applications of centrifugal microfluidic platforms in immunoassays, nucleic acid testing, antimicrobial susceptibility testing, and other tests. We also discuss the strengths and potential limitations of centrifugal microfluidic platforms, underscoring their transformative impact on traditional conventional procedures and their significant role in diagnostic practices.
即时检测(POCT)在传染病预防控制以及个性化精准医疗领域具有重要意义。新兴的微流控技术能够实现最少的试剂消耗、集成化以及高度自动化,在即时检测中发挥着关键作用。离心微流控技术,也被称为芯片实验室(LOAD),是微流控技术的一个重要子领域,它将关键的分析步骤集成到单个芯片上,从而优化流程并实现高通量自动化分析。通过利用旋转力学在无需外部压力源的情况下精确控制流体动力学,离心微流控技术便于在紧急医疗和现场环境中快速操作。本综述全面概述了用于即时检测的离心微流控技术的最新进展,涵盖理论原理和实际应用。我们首先介绍其基本操作原理、流体控制机制和信号输出检测方法。随后,我们深入探讨离心微流控平台在免疫测定、核酸检测、抗菌药敏试验及其他检测中的典型应用。我们还讨论了离心微流控平台的优势和潜在局限性,强调它们对传统常规程序的变革性影响及其在诊断实践中的重要作用。