Suppr超能文献

盆腔器官脱垂手术后手术部位感染预测模型的验证与重新校准

Validation and Recalibration of a Model for Predicting Surgical-Site Infection After Pelvic Organ Prolapse Surgery.

作者信息

Rhodes Stephen, Sahmoud Amine, Jelovsek J Eric, Bretschneider C Emi, Gupta Ankita, Hijaz Adonis K, Sheyn David

机构信息

Division of Urogynecology, Urology Institute, University Hospitals Cleveland, Cleveland, OH, USA.

Department of Obstetrics and Gynecology, University Hospitals Cleveland, Cleveland, OH, USA.

出版信息

Int Urogynecol J. 2025 Feb;36(2):431-438. doi: 10.1007/s00192-024-06025-6. Epub 2025 Jan 7.

Abstract

INTRODUCTION AND HYPOTHESIS

The objective was to externally validate and recalibrate a previously developed model for predicting postoperative surgical-site infection (SSI) after pelvic organ prolapse (POP) surgery.

METHODS

This study utilized a previously validated model for predicting post-POP surgery SSI within 90 days of surgery using a Medicare population. For this study, the model was externally validated and recalibrated using the Premier Healthcare Database (PHD) and the National Surgical Quality Improvement Project (NSQIP) database. Discriminatory performance was assessed via the c-statistic and calibration was assessed using calibration curves. Methods of recalibration in the large and logistic recalibration were used to update the models.

RESULTS

The PHD contained 420,277 POP procedures meeting the inclusion criteria and 1.6% resulted in SSI. The NSQIP dataset contained 62,553 POP surgeries and 1.4% resulted in SSI. Discrimination of the original model was comparable with that seen in the initial validation (c-statistic = 0.57 in PHD, 0.59 in NSQIP vs 0.60 in the original Medicare data). Recalibration greatly improved model calibration when evaluated in NSQIP data.

CONCLUSION

A previously developed model for predicting SSI after POP surgery demonstrated stable discriminatory ability when externally validated on the PHD and NSQIP databases. Model recalibration was necessary to improve prediction. Prospective studies are needed to validate the clinical utility of such a model.

摘要

引言与假设

目的是对外验证并重新校准先前开发的用于预测盆腔器官脱垂(POP)手术后手术部位感染(SSI)的模型。

方法

本研究利用先前验证的模型,该模型使用医疗保险人群来预测POP手术后90天内的SSI。对于本研究,使用Premier医疗数据库(PHD)和国家外科质量改进项目(NSQIP)数据库对外验证并重新校准该模型。通过c统计量评估区分性能,并使用校准曲线评估校准情况。使用大样本重新校准和逻辑重新校准方法来更新模型。

结果

PHD包含420,277例符合纳入标准的POP手术,其中1.6%发生了SSI。NSQIP数据集包含62,553例POP手术,其中1.4%发生了SSI。原始模型的区分能力与初始验证中的相当(PHD中的c统计量 = 0.57,NSQIP中的为0.59,而原始医疗保险数据中的为0.60)。在NSQIP数据中评估时,重新校准极大地改善了模型校准。

结论

先前开发的用于预测POP手术后SSI的模型在PHD和NSQIP数据库上进行外部验证时显示出稳定的区分能力。需要进行模型重新校准以改善预测。需要进行前瞻性研究来验证此类模型的临床实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验