文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于预测模型的干预措施以减少门诊失约:快速系统评价。

Predictive model-based interventions to reduce outpatient no-shows: a rapid systematic review.

机构信息

Centre for Health Informatics, Division of Informatics, Imaging and Data Science, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.

National Institute for Health and Care Research Applied Research Collaboration Greater Manchester, Manchester, UK.

出版信息

J Am Med Inform Assoc. 2023 Feb 16;30(3):559-569. doi: 10.1093/jamia/ocac242.


DOI:10.1093/jamia/ocac242
PMID:36508503
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9933067/
Abstract

OBJECTIVE: Outpatient no-shows have important implications for costs and the quality of care. Predictive models of no-shows could be used to target intervention delivery to reduce no-shows. We reviewed the effectiveness of predictive model-based interventions on outpatient no-shows, intervention costs, acceptability, and equity. MATERIALS AND METHODS: Rapid systematic review of randomized controlled trials (RCTs) and non-RCTs. We searched Medline, Cochrane CENTRAL, Embase, IEEE Xplore, and Clinical Trial Registries on March 30, 2022 (updated on July 8, 2022). Two reviewers extracted outcome data and assessed the risk of bias using ROB 2, ROBINS-I, and confidence in the evidence using GRADE. We calculated risk ratios (RRs) for the relationship between the intervention and no-show rates (primary outcome), compared with usual appointment scheduling. Meta-analysis was not possible due to heterogeneity. RESULTS: We included 7 RCTs and 1 non-RCT, in dermatology (n = 2), outpatient primary care (n = 2), endoscopy, oncology, mental health, pneumology, and an magnetic resonance imaging clinic. There was high certainty evidence that predictive model-based text message reminders reduced no-shows (1 RCT, median RR 0.91, interquartile range [IQR] 0.90, 0.92). There was moderate certainty evidence that predictive model-based phone call reminders (3 RCTs, median RR 0.61, IQR 0.49, 0.68) and patient navigators reduced no-shows (1 RCT, RR 0.55, 95% confidence interval 0.46, 0.67). The effect of predictive model-based overbooking was uncertain. Limited information was reported on cost-effectiveness, acceptability, and equity. DISCUSSION AND CONCLUSIONS: Predictive modeling plus text message reminders, phone call reminders, and patient navigator calls are probably effective at reducing no-shows. Further research is needed on the comparative effectiveness of predictive model-based interventions addressed to patients at high risk of no-shows versus nontargeted interventions addressed to all patients.

摘要

目的:门诊失约对成本和医疗质量有重要影响。失约预测模型可用于针对干预措施的实施,以减少失约。我们回顾了基于预测模型的干预措施对门诊失约、干预成本、可接受性和公平性的影响。

材料与方法:快速系统评价随机对照试验(RCT)和非 RCT。我们于 2022 年 3 月 30 日检索了 Medline、Cochrane 中心、Embase、IEEE Xplore 和临床试验注册处(于 2022 年 7 月 8 日更新)。两名审查员提取结局数据,并使用 ROB 2、ROBINS-I 和 GRADE 评估偏倚风险。我们计算了干预措施与失约率(主要结局)之间的关系的风险比(RR),与常规预约安排相比。由于异质性,无法进行 meta 分析。

结果:我们纳入了 7 项 RCT 和 1 项非 RCT,涉及皮肤科(n=2)、门诊初级保健(n=2)、内镜检查、肿瘤学、精神卫生、肺病学和磁共振成像诊所。基于预测模型的短信提醒减少失约的证据为高确定性(1 项 RCT,RR 0.91,四分位距 [IQR] 0.90,0.92)。基于预测模型的电话提醒(3 项 RCT,RR 0.61,IQR 0.49,0.68)和患者导航员减少失约的证据为中等确定性(1 项 RCT,RR 0.55,95%置信区间 0.46,0.67)。基于预测模型的过度预约的效果不确定。关于成本效益、可接受性和公平性的信息有限。

讨论与结论:预测建模加短信提醒、电话提醒和患者导航员呼叫可能对减少失约有效。需要进一步研究针对高失约风险患者的基于预测模型的干预措施与针对所有患者的非靶向干预措施的相对有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e8e/9933067/1d2cc41a1a97/ocac242f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e8e/9933067/78bf3a2b0f48/ocac242f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e8e/9933067/1d2cc41a1a97/ocac242f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e8e/9933067/78bf3a2b0f48/ocac242f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e8e/9933067/1d2cc41a1a97/ocac242f2.jpg

相似文献

[1]
Predictive model-based interventions to reduce outpatient no-shows: a rapid systematic review.

J Am Med Inform Assoc. 2023-2-16

[2]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2017-12-22

[3]
Non-pharmacological interventions for preventing delirium in hospitalised non-ICU patients.

Cochrane Database Syst Rev. 2021-7-19

[4]
Non-pharmacological interventions for preventing delirium in hospitalised non-ICU patients.

Cochrane Database Syst Rev. 2021-11-26

[5]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2021-4-19

[6]
Electronic cigarettes for smoking cessation.

Cochrane Database Syst Rev. 2025-1-29

[7]
Drugs for preventing postoperative nausea and vomiting in adults after general anaesthesia: a network meta-analysis.

Cochrane Database Syst Rev. 2020-10-19

[8]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2020-1-9

[9]
Mobile phone messaging for facilitating self-management of long-term illnesses.

Cochrane Database Syst Rev. 2012-12-12

[10]
Mobile phone messaging reminders for attendance at healthcare appointments.

Cochrane Database Syst Rev. 2012-7-11

引用本文的文献

[1]
Understanding No-Show Patterns in Healthcare: A Retrospective Study from Northern Italy.

Healthcare (Basel). 2025-7-30

[2]
External Validation of an EHR-Based Model for Risk of Patient No-Show in Primary Care.

JAMA Netw Open. 2025-7-1

[3]
Predictive Optimization of Patient No-Show Management in Primary Healthcare Using Machine Learning.

J Med Syst. 2025-1-14

[4]
Validation and Recalibration of a Model for Predicting Surgical-Site Infection After Pelvic Organ Prolapse Surgery.

Int Urogynecol J. 2025-2

[5]
Telemedicine appointments are more likely to be completed than in-person healthcare appointments: a retrospective cohort study.

JAMIA Open. 2024-7-13

[6]
Applying Machine Learning Techniques to Implementation Science.

Online J Public Health Inform. 2024-4-22

[7]
Factors associated with nonattendance at annual diabetes check-up in Ningbo, China: a case-control study.

Front Public Health. 2023

[8]
Large Language Models and Medical Education: Preparing for a Rapid Transformation in How Trainees Will Learn to Be Doctors.

ATS Sch. 2023-6-14

[9]
Innovative informatics interventions to improve health and health care.

J Am Med Inform Assoc. 2023-2-16

本文引用的文献

[1]
Causes, impacts and possible mitigation of non-attendance of appointments within the National Health Service: a literature review.

J Health Organ Manag. 2022-8-4

[2]
Pragmatic Randomized Study of Targeted Text Message Reminders to Reduce Missed Clinic Visits.

Perm J. 2022-4-5

[3]
Reducing non-attendance in outpatient appointments: predictive model development, validation, and clinical assessment.

BMC Health Serv Res. 2022-4-6

[4]
Patient No-Show Prediction: A Systematic Literature Review.

Entropy (Basel). 2020-6-17

[5]
Interventions to increase appointment attendance in safety net health centers: A systematic review and meta-analysis.

J Eval Clin Pract. 2021-8

[6]
Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments.

Res Synth Methods. 2021-1

[7]
A financial incentive program to improve appointment attendance at a safety-net hospital-based primary care hepatitis C treatment program.

PLoS One. 2020-2-11

[8]
Non-attendance at diabetes outpatient appointments: a systematic review.

Diabet Med. 2020-9

[9]
Synthesis without meta-analysis (SWiM) in systematic reviews: reporting guideline.

BMJ. 2020-1-16

[10]
RoB 2: a revised tool for assessing risk of bias in randomised trials.

BMJ. 2019-8-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索