Centre for Health Informatics, Division of Informatics, Imaging and Data Science, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.
National Institute for Health and Care Research Applied Research Collaboration Greater Manchester, Manchester, UK.
J Am Med Inform Assoc. 2023 Feb 16;30(3):559-569. doi: 10.1093/jamia/ocac242.
OBJECTIVE: Outpatient no-shows have important implications for costs and the quality of care. Predictive models of no-shows could be used to target intervention delivery to reduce no-shows. We reviewed the effectiveness of predictive model-based interventions on outpatient no-shows, intervention costs, acceptability, and equity. MATERIALS AND METHODS: Rapid systematic review of randomized controlled trials (RCTs) and non-RCTs. We searched Medline, Cochrane CENTRAL, Embase, IEEE Xplore, and Clinical Trial Registries on March 30, 2022 (updated on July 8, 2022). Two reviewers extracted outcome data and assessed the risk of bias using ROB 2, ROBINS-I, and confidence in the evidence using GRADE. We calculated risk ratios (RRs) for the relationship between the intervention and no-show rates (primary outcome), compared with usual appointment scheduling. Meta-analysis was not possible due to heterogeneity. RESULTS: We included 7 RCTs and 1 non-RCT, in dermatology (n = 2), outpatient primary care (n = 2), endoscopy, oncology, mental health, pneumology, and an magnetic resonance imaging clinic. There was high certainty evidence that predictive model-based text message reminders reduced no-shows (1 RCT, median RR 0.91, interquartile range [IQR] 0.90, 0.92). There was moderate certainty evidence that predictive model-based phone call reminders (3 RCTs, median RR 0.61, IQR 0.49, 0.68) and patient navigators reduced no-shows (1 RCT, RR 0.55, 95% confidence interval 0.46, 0.67). The effect of predictive model-based overbooking was uncertain. Limited information was reported on cost-effectiveness, acceptability, and equity. DISCUSSION AND CONCLUSIONS: Predictive modeling plus text message reminders, phone call reminders, and patient navigator calls are probably effective at reducing no-shows. Further research is needed on the comparative effectiveness of predictive model-based interventions addressed to patients at high risk of no-shows versus nontargeted interventions addressed to all patients.
目的:门诊失约对成本和医疗质量有重要影响。失约预测模型可用于针对干预措施的实施,以减少失约。我们回顾了基于预测模型的干预措施对门诊失约、干预成本、可接受性和公平性的影响。
材料与方法:快速系统评价随机对照试验(RCT)和非 RCT。我们于 2022 年 3 月 30 日检索了 Medline、Cochrane 中心、Embase、IEEE Xplore 和临床试验注册处(于 2022 年 7 月 8 日更新)。两名审查员提取结局数据,并使用 ROB 2、ROBINS-I 和 GRADE 评估偏倚风险。我们计算了干预措施与失约率(主要结局)之间的关系的风险比(RR),与常规预约安排相比。由于异质性,无法进行 meta 分析。
结果:我们纳入了 7 项 RCT 和 1 项非 RCT,涉及皮肤科(n=2)、门诊初级保健(n=2)、内镜检查、肿瘤学、精神卫生、肺病学和磁共振成像诊所。基于预测模型的短信提醒减少失约的证据为高确定性(1 项 RCT,RR 0.91,四分位距 [IQR] 0.90,0.92)。基于预测模型的电话提醒(3 项 RCT,RR 0.61,IQR 0.49,0.68)和患者导航员减少失约的证据为中等确定性(1 项 RCT,RR 0.55,95%置信区间 0.46,0.67)。基于预测模型的过度预约的效果不确定。关于成本效益、可接受性和公平性的信息有限。
讨论与结论:预测建模加短信提醒、电话提醒和患者导航员呼叫可能对减少失约有效。需要进一步研究针对高失约风险患者的基于预测模型的干预措施与针对所有患者的非靶向干预措施的相对有效性。
J Am Med Inform Assoc. 2023-2-16
Cochrane Database Syst Rev. 2017-12-22
Cochrane Database Syst Rev. 2021-7-19
Cochrane Database Syst Rev. 2021-11-26
Cochrane Database Syst Rev. 2021-4-19
Cochrane Database Syst Rev. 2025-1-29
Cochrane Database Syst Rev. 2020-10-19
Cochrane Database Syst Rev. 2020-1-9
Cochrane Database Syst Rev. 2012-12-12
Cochrane Database Syst Rev. 2012-7-11
Healthcare (Basel). 2025-7-30
JAMA Netw Open. 2025-7-1
Online J Public Health Inform. 2024-4-22
J Am Med Inform Assoc. 2023-2-16
Entropy (Basel). 2020-6-17
Diabet Med. 2020-9