Suppr超能文献

Repairbads: An automatic and adaptive method to repair bad channels and segments for OPM-MEG.

作者信息

Wang Fulong, Ma Yujie, Gao Tianyu, Tao Yue, Wang Ruonan, Zhao Ruochen, Cao Fuzhi, Gao Yang, Ning Xiaolin

机构信息

Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, 100191, Beijing, China; Hangzhou Institute of Extremely-Weak Magnetic Field Major National Science and Technology Infrastructure, Hangzhou, 310051, China.

Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, 100191, Beijing, China; Hangzhou Institute of Extremely-Weak Magnetic Field Major National Science and Technology Infrastructure, Hangzhou, 310051, China; School of Engineering Medicine, Beihang University, Beijing, 100191, China.

出版信息

Neuroimage. 2025 Feb 1;306:120996. doi: 10.1016/j.neuroimage.2024.120996. Epub 2025 Jan 6.

Abstract

The optically pumped magnetometer (OPM) based magnetoencephalography (MEG) system offers advantages such as flexible layout and wearability. However, the position instability or jitter of OPM sensors can result in bad channels and segments, which significantly impede subsequent preprocessing and analysis. Most common methods directly reject or interpolate to repair these bad channels and segments. Direct rejection leads to data loss, and when the number of sensors is limited, interpolation using neighboring sensors can cause significant signal distortion and cannot repair bad segments present in all channels. Therefore, most existing methods are unsuitable for OPM-MEG systems with fewer channels. We introduce an automatic bad segments and bad channels repair method for OPM-MEG, called Repairbads. This method aims to repair all bad data and reduce signal distortion, especially capable of automatically repairing bad segments present in all channels simultaneously. Repairbads employs Riemannian Potato combined with joint decorrelation to project out artifact components, achieving automatic bad segment repair. Then, an adaptive algorithm is used to segment the signal into relatively stable noise data chunks, and the source-estimate-utilizing noise-discarding algorithm is applied to each chunk to achieve automatic bad channel repair. We compared the performance of Repairbads with the Autoreject method on both simulated and real auditory evoked data, using five evaluation metrics for quantitative assessment. The results demonstrate that Repairbads consistently outperforms across all five metrics. In both simulated and real OPM-MEG data, Repairbads shows better performance than current state-of-the-art methods, reliably repairing bad data with minimal distortion. The automation of this method significantly reduces the burden of manual inspection, promoting the automated processing and clinical application of OPM-MEG.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验