Suppr超能文献

通过机器学习对混合人群进行大手术后的死亡率预测:一种多目标符号回归方法。

Mortality prediction after major surgery in a mixed population through machine learning: a multi-objective symbolic regression approach.

作者信息

Arina Pietro, Ferrari Davide, Tetlow Nicholas, Dewar Amy, Stephens Robert, Martin Daniel, Moonesinghe Ramani, Curcin Vasa, Singer Mervyn, Whittle John, Mazomenos Evangelos B

机构信息

Bloomsbury Institute of Intensive Care Medicine, University College London, London, UK.

Human Physiology and Performance Laboratory, Centre for Perioperative Medicine, Research Department of Targeted Intervention, University College London, London, UK.

出版信息

Anaesthesia. 2025 May;80(5):551-560. doi: 10.1111/anae.16538. Epub 2025 Jan 8.

Abstract

INTRODUCTION

Understanding 1-year mortality following major surgery offers valuable insights into patient outcomes and the quality of peri-operative care. Few models exist that predict 1-year mortality accurately. This study aimed to develop a predictive model for 1-year mortality in patients undergoing complex non-cardiac surgery using a novel machine-learning technique called multi-objective symbolic regression.

METHODS

A single-institution database of patients undergoing major elective surgery with previous cardiopulmonary exercise testing was divided into three datasets: pre-operative clinical data; cardiorespiratory and physiological data; and combined. A multi-objective symbolic regression model was developed and compared against existing models. Model performance was evaluated using the F1 score. Shapley additive explanations analysis was used to identify the major contributors to model performance.

RESULTS

From 2145 patients in the database, 1190 were included, with 952 in the training dataset and 238 in the test dataset. Median (IQR [range]) age was 71 (61-79 [45-89]) years and 825 (69%) were male. The multi-objective symbolic regression model demonstrated robust consistency with an F1 score of 0.712. Shapley additive explanations analysis indicated that ventilatory equivalents for carbon dioxide, oxygen at peak exercise and BMI influenced model performance most significantly, surpassing surgery type and named comorbidities.

DISCUSSION

This study confirms the feasibility of developing a multi-objective symbolic regression-based model for predicting 1-year postoperative mortality in a mixed non-cardiac surgical population. The model's strong performance underscores the critical role of physiological data, particularly cardiorespiratory fitness, in surgical risk assessment and emphasises the importance of pre-operative optimisation to identify and manage high-risk patients. The multi-objective symbolic regression model demonstrated high sensitivity and a good F1 score, highlighting its potential as an effective tool for peri-operative risk prediction.

摘要

引言

了解大手术后的1年死亡率有助于深入了解患者预后及围手术期护理质量。能够准确预测1年死亡率的模型很少。本研究旨在使用一种名为多目标符号回归的新型机器学习技术,开发一种预测接受复杂非心脏手术患者1年死亡率的模型。

方法

一个包含接受过主要择期手术且之前进行过心肺运动测试患者的单机构数据库被分为三个数据集:术前临床数据;心肺和生理数据;以及综合数据。开发了一个多目标符号回归模型,并与现有模型进行比较。使用F1分数评估模型性能。采用夏普利加性解释分析来确定模型性能的主要贡献因素。

结果

数据库中的2145名患者中,1190名被纳入,其中952名在训练数据集中,238名在测试数据集中。年龄中位数(四分位间距[范围])为71(61 - 79[45 - 89])岁,825名(69%)为男性。多目标符号回归模型表现出稳健的一致性,F1分数为0.712。夏普利加性解释分析表明,二氧化碳通气当量、运动峰值时的氧气通气当量和体重指数对模型性能的影响最为显著,超过了手术类型和指定的合并症。

讨论

本研究证实了开发一种基于多目标符号回归的模型来预测混合非心脏手术人群术后1年死亡率的可行性。该模型的良好性能强调了生理数据,尤其是心肺适能,在手术风险评估中的关键作用,并强调了术前优化以识别和管理高危患者的重要性。多目标符号回归模型显示出高敏感性和良好的F1分数,突出了其作为围手术期风险预测有效工具的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad53/11987794/42be6035046e/ANAE-80-551-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验