Suppr超能文献

语义对齐:一种基于分布语义学来量化英汉翻译对等词语义等价程度的度量方法。

Semantic alignment: A measure to quantify the degree of semantic equivalence for English-Chinese translation equivalents based on distributional semantics.

作者信息

Liu Yufeng, Chen Shifa, Yang Yi

机构信息

Department of English, College of Foreign Languages, Ocean University of China, No. 238, Songling Road, Laoshan District, Qingdao, Shandong Province, 266100, The People's Republic of China.

Department of Chinese Language and Literature, College of Humanities, Southwest Jiaotong University, No. 999, Xi'an Road, Pidu District, Chengdu, Sichuan Province, 611756, The People's Republic of China.

出版信息

Behav Res Methods. 2025 Jan 8;57(1):51. doi: 10.3758/s13428-024-02527-9.

Abstract

The degree of semantic equivalence of translation pairs is typically measured by asking bilinguals to rate the semantic similarity of them or comparing the number and meaning of dictionary entries. Such measures are subjective, labor-intensive, and unable to capture the fine-grained variation in the degree of semantic equivalence. Thompson et al. (in Nature Human Behaviour, 4(10), 1029-1038, 2020) propose a computational method to quantify the extent to which translation equivalents are semantically aligned by measuring the contextual use across languages. Here, we refine this method to quantify semantic alignment of English-Chinese translation equivalents using word2vec based on the proposal that the degree of similarity between the contexts associated with a word and those of its multiple translations vary continuously. We validate our measure using semantic alignment from GloVe and fastText, and data from two behavioral datasets. The consistency of semantic alignment induced across different models confirms the robustness of our method. We demonstrate that semantic alignment not only reflects human semantic similarity judgment of translation equivalents but also captures bilinguals' usage frequency of translations. We also show that our method is more cognitively plausible than Thompson et al.'s method. Furthermore, the correlations between semantic alignment and key psycholinguistic factors mirror those between human-rated semantic similarity and these variables, indicating that computed semantic alignment reflects the degree of semantic overlap of translation equivalents in the bilingual mental lexicon. We further provide the largest English-Chinese translation equivalent dataset to date, encompassing 50,088 translation pairs for 15,734 English words, their dominant Chinese translation equivalents, and their semantic alignment Rc values.

摘要

翻译对的语义等效程度通常通过让双语者对它们的语义相似性进行评分或比较词典条目的数量和含义来衡量。这些方法主观、耗费人力,并且无法捕捉语义等效程度的细微变化。汤普森等人(发表于《自然·人类行为》,2020年第4卷第10期,第1029 - 1038页)提出了一种计算方法,通过测量跨语言的上下文使用情况来量化翻译对等词在语义上的对齐程度。在此,我们改进了这种方法,基于与一个词相关的上下文与其多个翻译的上下文之间的相似程度连续变化这一假设,使用基于词向量的方法来量化英汉翻译对等词的语义对齐。我们使用来自GloVe和fastText的语义对齐以及两个行为数据集的数据来验证我们的测量方法。不同模型间语义对齐的一致性证实了我们方法的稳健性。我们证明语义对齐不仅反映了人类对翻译对等词的语义相似性判断,还捕捉了双语者对翻译的使用频率。我们还表明,我们的方法比汤普森等人的方法在认知上更合理。此外,语义对齐与关键心理语言学因素之间的相关性反映了人工评分的语义相似性与这些变量之间的相关性,表明计算出的语义对齐反映了双语心理词典中翻译对等词的语义重叠程度。我们还提供了迄今为止最大的英汉翻译对等词数据集,涵盖了15,734个英语单词的50,088个翻译对、它们的主要汉语翻译对等词以及它们的语义对齐Rc值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验