de Varda Andrea Gregor, Marelli Marco
Department of Psychology, University of Milano - Bicocca, Piazza dell'Ateneo Nuovo 1, Milan, MI, 20126, Italy.
Psychon Bull Rev. 2025 Jun;32(3):1425-1442. doi: 10.3758/s13423-024-02630-0. Epub 2025 Jan 8.
Auditory iconic words display a phonological profile that imitates their referents' sounds. Traditionally, those words are thought to constitute a minor portion of the auditory lexicon. In this article, we challenge this assumption by assessing the pervasiveness of onomatopoeia in the English auditory vocabulary through a novel data-driven procedure. We embed spoken words and natural sounds into a shared auditory space through (a) a short-time Fourier transform, (b) a convolutional neural network trained to classify sounds, and (c) a network trained on speech recognition. Then, we employ the obtained vector representations to measure their objective auditory resemblance. These similarity indexes show that imitation is not limited to some circumscribed semantic categories, but instead can be considered as a widespread mechanism underlying the structure of the English auditory vocabulary. We finally empirically validate our similarity indexes as measures of iconicity against human judgments.
听觉象声词呈现出一种模仿其指代对象声音的语音特征。传统上,这些词被认为只占听觉词汇的一小部分。在本文中,我们通过一种全新的数据驱动程序评估英语听觉词汇中拟声词的普遍性,对这一假设提出了挑战。我们通过以下方式将口语单词和自然声音嵌入到一个共享的听觉空间中:(a) 短时傅里叶变换,(b) 一个经过训练用于对声音进行分类的卷积神经网络,以及 (c) 一个基于语音识别训练的网络。然后,我们使用获得的向量表示来测量它们客观的听觉相似性。这些相似性指标表明,模仿并不局限于某些特定的语义类别,相反,可以被视为构成英语听觉词汇结构的一种广泛机制。我们最终通过实证验证了我们的相似性指标作为针对人类判断的象似性度量的有效性。