Suppr超能文献

子痫前期相关的自噬生物标志物:潜在机制、与免疫微环境的相关性及药物筛选。

Autophagy-related biomarkers in preeclampsia: the underlying mechanism, correlation to the immune microenvironment and drug screening.

机构信息

Department of Obstetrics, Huanghe Sanmenxia Hospital Affiliated to Henan University of Science and Technology, Sanmenxia, China.

Department of Clinical Laboratory, Huanghe Sanmenxia Hospital Affiliated to Henan University of Science and Technology, Sanmenxia, China.

出版信息

BMC Pregnancy Childbirth. 2024 Jan 2;24(1):1. doi: 10.1186/s12884-023-06211-2.

Abstract

BACKGROUND

Preeclampsia is a life-threatening disease of pregnancy that lacks effective pharmaceuticals which can target its pathogenesis. Since preeclampsia involves complex pathological processes, including autophagy, this study aims to explore autophagy-related mechanisms of preeclampsia and to screen potential drugs.

METHODS

Firstly, the datasets GSE75010, GSE24129, GSE66273, and autophagic genes lists were downloaded from public databases. Then, a weighted gene co-expression network analysis (WGCNA) was applied to filter autophagic-related hub genes of preeclampsia. The differential expression levels of the hub genes were validated with datasets GSE24129 and GSE66273. Next, the GO and KEGG enrichment, protein-protein interacting (PPI) network, as well as the downstream pathways was analyzed via the starBase, STRING and Cytoscape to determine the functions and regulatory network of the hub genes. Additionally, the immune microenvironment of preeclampsia was investigated by the CIBERSORTX database. Finally, three herb ingredients, berberine, baicalein, and luteolin were screened by molecular docking in comparison to pravastatin, metformin, and aspirin, to predict potential drugs for treating preeclampsia.

RESULTS

A total of 54 autophagy-related genes were filtered by WGCNA. After filtering with |GS| > 0.5 and |MM| > 0.8, three hub genes, namely PKM, LEP, and HK2, were identified and validated. Among these genes, PKM and LEP were overexpressed in women older than 35 years old ( p<0.05; p<0.05); the expression of PKM, LEP, and HK2 differed remarkably in women with different BMI (all p<0.05); PKM overexpressed in women with hypertension (p<0.05). The regulatory network of hub genes demonstrated that they were mainly enriched in metabolic pathways, including the AMPK signaling pathway, glucagon signaling pathway, adipocytokine signaling pathway, and central carbon metabolism. Then, immune microenvironment analysis turned out that M2 macrophages were reduced in preeclampsia women (p<0.0001) and were negatively correlated with the expression of PKM (r=-0.2, p<0.05), LEP (r=-0.4, p<0.0001), and HK2 (r=-0.3, p<0.001). Lastly, molecular docking showed baicalein and luteolin could bind intimately to hub genes.

CONCLUSION

PKM, LEP, and HK2 could be promising biomarkers for preeclampsia, which might regulate the pathogenesis of preeclampsia via metabolism pathways and immune microenvironment. Baicalein and luteolin could be potential therapeutics for preeclampsia.

摘要

背景

子痫前期是一种危及生命的妊娠疾病,缺乏能够针对其发病机制的有效药物。由于子痫前期涉及复杂的病理过程,包括自噬,因此本研究旨在探索子痫前期的自噬相关机制,并筛选潜在的药物。

方法

首先,从公共数据库中下载数据集 GSE75010、GSE24129、GSE66273 和自噬基因列表。然后,应用加权基因共表达网络分析(WGCNA)筛选子痫前期自噬相关的关键基因。使用数据集 GSE24129 和 GSE66273 验证关键基因的差异表达水平。接下来,通过 starBase、STRING 和 Cytoscape 进行 GO 和 KEGG 富集、蛋白质-蛋白质相互作用(PPI)网络以及下游途径分析,以确定关键基因的功能和调控网络。此外,通过 CIBERSORTX 数据库研究子痫前期的免疫微环境。最后,通过分子对接比较与普伐他汀、二甲双胍和阿司匹林相比,筛选三种草药成分,小檗碱、黄芩素和木犀草素,以预测治疗子痫前期的潜在药物。

结果

通过 WGCNA 共筛选出 54 个与自噬相关的基因。经过 |GS| > 0.5 和 |MM| > 0.8 过滤后,鉴定并验证了三个关键基因,即 PKM、LEP 和 HK2。在这些基因中,PKM 和 LEP 在年龄大于 35 岁的女性中表达上调(p<0.05;p<0.05);PKM、LEP 和 HK2 在不同 BMI 的女性中表达差异显著(均 p<0.05);PKM 在高血压女性中表达上调(p<0.05)。关键基因的调控网络表明,它们主要富集在代谢途径中,包括 AMPK 信号通路、胰高血糖素信号通路、脂肪细胞因子信号通路和中心碳代谢。然后,免疫微环境分析表明子痫前期女性的 M2 巨噬细胞减少(p<0.0001),并且与 PKM(r=-0.2,p<0.05)、LEP(r=-0.4,p<0.0001)和 HK2(r=-0.3,p<0.001)的表达呈负相关。最后,分子对接表明黄芩素和木犀草素可以与关键基因紧密结合。

结论

PKM、LEP 和 HK2 可能是子痫前期有前途的生物标志物,可能通过代谢途径和免疫微环境调节子痫前期的发病机制。黄芩素和木犀草素可能是子痫前期的潜在治疗药物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fcf6/10759589/c5608a11969b/12884_2023_6211_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验