Suppr超能文献

来自O的固氮酶构象保护的结构基础

Structural basis for the conformational protection of nitrogenase from O.

作者信息

Narehood Sarah M, Cook Brian D, Srisantitham Suppachai, Eng Vanessa H, Shiau Angela A, McGuire Kelly L, Britt R David, Herzik Mark A, Tezcan F Akif

机构信息

Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.

Department of Chemistry, University of California, Davis, Davis, CA, USA.

出版信息

Nature. 2025 Jan;637(8047):991-997. doi: 10.1038/s41586-024-08311-1. Epub 2025 Jan 8.

Abstract

The low reduction potentials required for the reduction of dinitrogen (N) render metal-based nitrogen-fixation catalysts vulnerable to irreversible damage by dioxygen (O). Such O sensitivity represents a major conundrum for the enzyme nitrogenase, as a large fraction of nitrogen-fixing organisms are either obligate aerobes or closely associated with O-respiring organisms to support the high energy demand of catalytic N reduction. To counter O damage to nitrogenase, diazotrophs use O scavengers, exploit compartmentalization or maintain high respiration rates to minimize intracellular O concentrations. A last line of damage control is provided by the 'conformational protection' mechanism, in which a [2Fe:2S] ferredoxin-family protein termed FeSII (ref. ) is activated under O stress to form an O-resistant complex with the nitrogenase component proteins. Despite previous insights, the molecular basis for the conformational O protection of nitrogenase and the mechanism of FeSII activation are not understood. Here we report the structural characterization of the Azotobacter vinelandii FeSII-nitrogenase complex by cryo-electron microscopy. Our studies reveal a core complex consisting of two molybdenum-iron proteins (MoFePs), two iron proteins (FePs) and one FeSII homodimer, which polymerize into extended filaments. In this three-protein complex, FeSII mediates an extensive network of interactions with MoFeP and FeP to position their iron-sulphur clusters in catalytically inactive but O-protected states. The architecture of the FeSII-nitrogenase complex is confirmed by solution studies, which further indicate that the activation of FeSII involves an oxidation-induced conformational change.

摘要

将二氮(N)还原所需的低还原电位使金属基固氮催化剂易受双氧(O)的不可逆损害。这种对O的敏感性是固氮酶面临的一个主要难题,因为很大一部分固氮生物要么是专性需氧菌,要么与进行O呼吸的生物密切相关,以满足催化N还原的高能量需求。为了对抗O对固氮酶的损害,固氮菌使用O清除剂、利用区室化或维持高呼吸速率以尽量降低细胞内O浓度。最后一道损害控制防线由“构象保护”机制提供,在该机制中,一种名为FeSII(参考文献)的[2Fe:2S]铁氧化还原蛋白家族蛋白在O胁迫下被激活,与固氮酶组分蛋白形成抗O复合物。尽管之前有相关见解,但固氮酶构象O保护的分子基础以及FeSII激活机制仍不清楚。在这里,我们通过冷冻电子显微镜报告了棕色固氮菌FeSII -固氮酶复合物的结构特征。我们的研究揭示了一个核心复合物,它由两个钼铁蛋白(MoFeP)、两个铁蛋白(FeP)和一个FeSII同型二聚体组成,这些成分聚合成延伸的细丝。在这个三蛋白复合物中,FeSII介导了与MoFeP和FeP的广泛相互作用网络,将它们的铁硫簇定位在催化无活性但受O保护的状态。溶液研究证实了FeSII -固氮酶复合物的结构,进一步表明FeSII的激活涉及氧化诱导的构象变化。

相似文献

1
Structural basis for the conformational protection of nitrogenase from O.
Nature. 2025 Jan;637(8047):991-997. doi: 10.1038/s41586-024-08311-1. Epub 2025 Jan 8.
2
Conformational protection of molybdenum nitrogenase by Shethna protein II.
Nature. 2025 Jan;637(8047):998-1004. doi: 10.1038/s41586-024-08355-3. Epub 2025 Jan 8.
3
Unraveling the molecular mechanisms of nitrogenase conformational protection against oxygen in diazotrophic bacteria.
BMC Genomics. 2010 Dec 22;11 Suppl 5(Suppl 5):S7. doi: 10.1186/1471-2164-11-S5-S7.
6
A Conformational Switch Triggers Nitrogenase Protection from Oxygen Damage by Shethna Protein II (FeSII).
J Am Chem Soc. 2016 Jan 13;138(1):239-47. doi: 10.1021/jacs.5b10341. Epub 2015 Dec 24.
8
Cross-Coupling of Mo- and V-Nitrogenases Permits Protein-Mediated Protection from Oxygen Deactivation.
Chembiochem. 2024 Dec 2;25(23):e202400585. doi: 10.1002/cbic.202400585. Epub 2024 Nov 23.
10
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.

引用本文的文献

本文引用的文献

1
The crystal structure of Shethna protein II (FeSII) from Azotobacter vinelandii suggests a domain swap.
Acta Crystallogr D Struct Biol. 2024 Aug 1;80(Pt 8):599-604. doi: 10.1107/S2059798324005928. Epub 2024 Jul 10.
2
The HADDOCK2.4 web server for integrative modeling of biomolecular complexes.
Nat Protoc. 2024 Nov;19(11):3219-3241. doi: 10.1038/s41596-024-01011-0. Epub 2024 Jun 17.
3
Automated model building and protein identification in cryo-EM maps.
Nature. 2024 Apr;628(8007):450-457. doi: 10.1038/s41586-024-07215-4. Epub 2024 Feb 26.
4
Heterologous synthesis of the complex homometallic cores of nitrogenase P- and M-clusters in .
Proc Natl Acad Sci U S A. 2023 Oct 31;120(44):e2314788120. doi: 10.1073/pnas.2314788120. Epub 2023 Oct 23.
5
Structures of the nitrogenase complex prepared under catalytic turnover conditions.
Science. 2022 Aug 19;377(6608):865-869. doi: 10.1126/science.abq7641. Epub 2022 Jul 28.
7
: expanded functionality and new tools for small-angle scattering data analysis.
J Appl Crystallogr. 2021 Feb 1;54(Pt 1):343-355. doi: 10.1107/S1600576720013412.
8
Structural Enzymology of Nitrogenase Enzymes.
Chem Rev. 2020 Jun 24;120(12):4969-5004. doi: 10.1021/acs.chemrev.0c00067. Epub 2020 Jun 15.
9
Catalytic N-to-NH (or -NH) Conversion by Well-Defined Molecular Coordination Complexes.
Chem Rev. 2020 Jun 24;120(12):5582-5636. doi: 10.1021/acs.chemrev.9b00638. Epub 2020 Apr 30.
10
Reduction of Substrates by Nitrogenases.
Chem Rev. 2020 Jun 24;120(12):5082-5106. doi: 10.1021/acs.chemrev.9b00556. Epub 2020 Mar 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验