Narehood Sarah M, Cook Brian D, Srisantitham Suppachai, Eng Vanessa H, Shiau Angela A, McGuire Kelly L, Britt R David, Herzik Mark A, Tezcan F Akif
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
Department of Chemistry, University of California, Davis, Davis, CA, USA.
Nature. 2025 Jan;637(8047):991-997. doi: 10.1038/s41586-024-08311-1. Epub 2025 Jan 8.
The low reduction potentials required for the reduction of dinitrogen (N) render metal-based nitrogen-fixation catalysts vulnerable to irreversible damage by dioxygen (O). Such O sensitivity represents a major conundrum for the enzyme nitrogenase, as a large fraction of nitrogen-fixing organisms are either obligate aerobes or closely associated with O-respiring organisms to support the high energy demand of catalytic N reduction. To counter O damage to nitrogenase, diazotrophs use O scavengers, exploit compartmentalization or maintain high respiration rates to minimize intracellular O concentrations. A last line of damage control is provided by the 'conformational protection' mechanism, in which a [2Fe:2S] ferredoxin-family protein termed FeSII (ref. ) is activated under O stress to form an O-resistant complex with the nitrogenase component proteins. Despite previous insights, the molecular basis for the conformational O protection of nitrogenase and the mechanism of FeSII activation are not understood. Here we report the structural characterization of the Azotobacter vinelandii FeSII-nitrogenase complex by cryo-electron microscopy. Our studies reveal a core complex consisting of two molybdenum-iron proteins (MoFePs), two iron proteins (FePs) and one FeSII homodimer, which polymerize into extended filaments. In this three-protein complex, FeSII mediates an extensive network of interactions with MoFeP and FeP to position their iron-sulphur clusters in catalytically inactive but O-protected states. The architecture of the FeSII-nitrogenase complex is confirmed by solution studies, which further indicate that the activation of FeSII involves an oxidation-induced conformational change.
将二氮(N)还原所需的低还原电位使金属基固氮催化剂易受双氧(O)的不可逆损害。这种对O的敏感性是固氮酶面临的一个主要难题,因为很大一部分固氮生物要么是专性需氧菌,要么与进行O呼吸的生物密切相关,以满足催化N还原的高能量需求。为了对抗O对固氮酶的损害,固氮菌使用O清除剂、利用区室化或维持高呼吸速率以尽量降低细胞内O浓度。最后一道损害控制防线由“构象保护”机制提供,在该机制中,一种名为FeSII(参考文献)的[2Fe:2S]铁氧化还原蛋白家族蛋白在O胁迫下被激活,与固氮酶组分蛋白形成抗O复合物。尽管之前有相关见解,但固氮酶构象O保护的分子基础以及FeSII激活机制仍不清楚。在这里,我们通过冷冻电子显微镜报告了棕色固氮菌FeSII -固氮酶复合物的结构特征。我们的研究揭示了一个核心复合物,它由两个钼铁蛋白(MoFeP)、两个铁蛋白(FeP)和一个FeSII同型二聚体组成,这些成分聚合成延伸的细丝。在这个三蛋白复合物中,FeSII介导了与MoFeP和FeP的广泛相互作用网络,将它们的铁硫簇定位在催化无活性但受O保护的状态。溶液研究证实了FeSII -固氮酶复合物的结构,进一步表明FeSII的激活涉及氧化诱导的构象变化。